A novel hybrid PSO–GWO algorithm for optimization problems

  • Fatih Ahmet ŞenelEmail author
  • Fatih Gökçe
  • Asım Sinan Yüksel
  • Tuncay Yiğit
Original Article


In this study, we propose a new hybrid algorithm fusing the exploitation ability of the particle swarm optimization (PSO) with the exploration ability of the grey wolf optimizer (GWO). Our approach combines two methods by replacing a particle of the PSO with small possibility by a particle partially improved with the GWO. We have evaluated our approach on five different benchmark functions and on three different real-world problems, namely parameter estimation for frequency-modulated sound waves, process flowsheeting problem, and leather nesting problem (LNP). The LNP is one of the hard industrial problems, where two-dimensional irregular patterns are placed on two-dimensional irregular-shaped leather material such that a minimum amount of the material is wasted. In our evaluations, we compared our approach with the conventional PSO and GWO algorithms, artificial bee colony and social spider algorithm, and as well as with three different hybrid approaches of the PSO and GWO algorithms. Our experimental results reveal that our hybrid approach successfully merges the two algorithms and performs better than all methods employed in the comparisons. The results also indicate that our approach converges to more optimal solutions with fewer iterations.


Exploitation Exploration Grey wolf optimizer (GWO) Leather nesting problem (LNP) Particle swarm optimization (PSO) 



  1. 1.
    Christensen J, Bastien C (2016) Chapter—seven-heuristic and meta-heuristic optimization algorithms. In: Christensen J, Bastien C (eds) Nonlinear optimization of vehicle safety structures. Butterworth-Heinemann, Oxford, pp 277–314CrossRefGoogle Scholar
  2. 2.
    Yang X-S (2014) Swarm intelligence based algorithms: a critical analysis. Evolut Intell 7:17–28CrossRefGoogle Scholar
  3. 3.
    Arani BO, Mirzabeygi P, Panahi MS (2013) An improved pso algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance. Swarm Evolut Comput 11:1–15CrossRefGoogle Scholar
  4. 4.
    Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle swarm optimization. Inf Sci 181(20):4515–4538 (special issue on interpretable fuzzy systems)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kessentini S, Barchiesi D (2010) A new strategy to improve particle swarm optimization exploration ability. 2010 Sec WRI Glob Congress Intell Syst 1:27–30CrossRefGoogle Scholar
  6. 6.
    Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  7. 7.
    Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30:413–435CrossRefGoogle Scholar
  8. 8.
    Mahmood A, Khan S, Albalooshi F, Awwad N (2017) Energy-aware real-time task scheduling in multiprocessor systems using a hybrid genetic algorithm. Electronics 6:40CrossRefGoogle Scholar
  9. 9.
    Liu J, Xu S, Zhang F, Wang L (2017) A hybrid genetic-ant colony optimization algorithm for the optimal path selection. Intell Autom Soft Comput 23:235–242CrossRefGoogle Scholar
  10. 10.
    Torkaman S, Fatemi Ghomi S, Karimi B (2017) Hybrid simulated annealing and genetic approach for solving a multi-stage production planning with sequence-dependent setups in a closed-loop supply chain. Appl Soft Comput 71:1085–1104CrossRefGoogle Scholar
  11. 11.
    Lam YC, Deng YM, Au CK (2006) A GA/gradient hybrid approach for injection moulding conditions optimisation. Eng Comput 21:193–202CrossRefGoogle Scholar
  12. 12.
    Yuce B, Fruggiero F, Packianather M, Pham D, Mastrocinque E, Lambiase A, Fera M (2017) Hybrid Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties. Comput Ind Eng 113:842–858CrossRefGoogle Scholar
  13. 13.
    Vosoughi A, Darabi A (2017) A new hybrid CG-GAs approach for high sensitive optimization problems: with application for parameters estimation of FG nanobeams. Appl Soft Comput 52:220–230CrossRefGoogle Scholar
  14. 14.
    Chen Z-X, Huang H (2011) A hybrid method for intrusion detection with GA-based feature selection. Intell Autom Soft Comput 17:175–186CrossRefGoogle Scholar
  15. 15.
    Mafarja MM, Mirjalili S (2017) Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312CrossRefGoogle Scholar
  16. 16.
    Taheri K, Hasanipanah M, Golzar SB, Majid MZA (2017) A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Eng Comput 33:689–700CrossRefGoogle Scholar
  17. 17.
    Xue Y, Zhong S, Ma T, Cao J (2015) A hybrid evolutionary algorithm for numerical optimization problem. Intell Autom Soft Comput 21:473–490CrossRefGoogle Scholar
  18. 18.
    Singh N, Singh S (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20:1586–1601CrossRefGoogle Scholar
  19. 19.
    Pan J-S, Dao T-K, Chu S-C, Nguyen T-T (2018) A novel hybrid GWO-FPA algorithm for optimization applications. Advances in smart vehicular technology, transportation, communication and applications. VTCA 2017. Smart innovation, systems and technologies. Springer, Cham, pp 274–281Google Scholar
  20. 20.
    Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comput 60:634–654CrossRefGoogle Scholar
  21. 21.
    Kumar N, Vidyarthi DP (2016) A novel hybrid PSO-GA meta-heuristic for scheduling of DAG with communication on multiprocessor systems. Eng Comput 32:35–47CrossRefGoogle Scholar
  22. 22.
    Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305MathSciNetGoogle Scholar
  23. 23.
    Ali AF, Tawhid MA (2017) A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems. Ain Shams Eng J 8:191–206CrossRefGoogle Scholar
  24. 24.
    Kaur S, Mahajan R (2018) Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egypt Inform J 19(3):145–150CrossRefGoogle Scholar
  25. 25.
    Ghasemi E, Kalhori H, Bagherpour R (2016) A new hybrid ANFIS-PSO model for prediction of peak particle velocity due to bench blasting. Eng Comput 32:607–614CrossRefGoogle Scholar
  26. 26.
    Hasanipanah M, Shahnazar A, Bakhshandeh Amnieh H, Jahed Armaghani D (2017) Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model. Eng Comput 33:23–31CrossRefGoogle Scholar
  27. 27.
    Chopra N, Kumar G, Mehta S (2016) Hybrid GWO-PSO algorithm for solving convex economic load dispatch problem. Int J Res Adv Technol 4(6):37–41Google Scholar
  28. 28.
    Kamboj VK (2016) A novel hybrid PSO-GWO approach for unit commitment problem. Neural Comput Appl 27:1643–1655CrossRefGoogle Scholar
  29. 29.
    Singh N, Singh SB (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math 2017:2030489. MathSciNetCrossRefGoogle Scholar
  30. 30.
    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. KanGAL Rep 2005005:2005Google Scholar
  31. 31.
    Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42:627–646CrossRefGoogle Scholar
  32. 32.
    Dong M, Wang N, Cheng X, Jiang C (2014) Composite differential evolution with modified oracle penalty method for constrained optimization problems. Math Prob Eng 2014:617905. CrossRefGoogle Scholar
  33. 33.
    Cherri LH, Mundim LR, Andretta M, Toledo FMB, Oliveira JF, Carravilla MA (2016) Robust mixed-integer linear programming models for the irregular strip packing problem. Eur J Oper Res 253:570–583MathSciNetCrossRefGoogle Scholar
  34. 34.
    Alves C, Brás P, Valério de Carvalho J, Pinto T (2012) New constructive algorithms for leather nesting in the automotive industry. Comput Oper Res 39(7):1487–1505CrossRefGoogle Scholar
  35. 35.
    Brás P, Alves C, Valério De Carvalho J, Pinto T (2010) Exploring new constructive algorithms for the leather nesting problem in the automotive industry. IFAC Proc Vol 43:225–230CrossRefGoogle Scholar
  36. 36.
    Crispin A, Clay P, Taylor G, Bayes T, Reedman D (2005) Genetic algorithm coding methods for leather nesting. Appl Intell 23:9–20CrossRefGoogle Scholar
  37. 37.
    Yuping Z, Shouwei J, Chunli Z (2005) A very fast simulated re-annealing algorithm for the leather nesting problem. Int J Adv Manuf Technol 25:1113–1118CrossRefGoogle Scholar
  38. 38.
    Basturk B (2006) An artificial bee colony (abc) algorithm for numeric function optimization. In IEEE Swarm Intelligence Symposium. Indianapolis, IN, USA, 2006Google Scholar
  39. 39.
    Yu JJ, Li VO (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627CrossRefGoogle Scholar
  40. 40.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc ICNN’95 Int Conf Neural Netw 4:1942–1948 IEEECrossRefGoogle Scholar
  41. 41.
    Hasanipanah M, Naderi R, Kashir J, Noorani SA, Zeynali Aaq Qaleh A (2017) Prediction of blast-produced ground vibration using particle swarm optimization. Eng Comput 33:173–179CrossRefGoogle Scholar
  42. 42.
    Ghasemi E (2017) Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput Appl 28:1855–1862CrossRefGoogle Scholar
  43. 43.
    Yagiz S, Ghasemi E, Adoko AC (2018) Prediction of rock brittleness using genetic algorithm and particle swarm optimization techniques. Geotech Geol Eng 36:1–11CrossRefGoogle Scholar
  44. 44.
    Kaveh A, Zakian P (2017) Improved GWO algorithm for optimal design of truss structures. Eng Comput 34:1–23CrossRefGoogle Scholar
  45. 45.
    Mirjalili S (2015) How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell 43:150–161CrossRefGoogle Scholar
  46. 46.
    Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 84–88, IEEEGoogle Scholar
  47. 47.
    Shirani H, Habibi M, Besalatpour A, Esfandiarpour I (2015) Determining the features influencing physical quality of calcareous soils in a semiarid region of Iran using a hybrid PSO-DT algorithm. Geoderma 259–260:1–11CrossRefGoogle Scholar
  48. 48.
    Li S-F, Cheng C-Y (2017) Particle swarm optimization with fitness adjustment parameters. Comput Ind Eng 113:831–841CrossRefGoogle Scholar
  49. 49.
    Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. Springer, Cham, pp 86–94Google Scholar
  50. 50.
    James J, Li VO (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627CrossRefGoogle Scholar
  51. 51.
    James J, Li VO (2015) Parameter sensitivity analysis of social spider algorithm. In: Evolutionary computation (CEC), 2015 IEEE congress on, IEEE, pp 3200–3205Google Scholar
  52. 52.
    Dang BT, Vo MC, Truong TK (2017) Social spider algorithm-based spectrum allocation optimization for cognitive radio networks. Int J Appl Eng Res 12(13):3879–3887Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Fatih Ahmet Şenel
    • 1
    Email author
  • Fatih Gökçe
    • 1
  • Asım Sinan Yüksel
    • 1
  • Tuncay Yiğit
    • 1
  1. 1.Department of Computer EngineeringSüleyman Demirel UniversityIspartaTurkey

Personalised recommendations