Advertisement

Turing models in the biological pattern formation through spectral meshless radial point interpolation approach

  • Elyas Shivanian
  • Ahmad Jafarabadi
Original Article
  • 41 Downloads

Abstract

In the present paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the solution of pattern formation in nonlinear reaction diffusion systems. Firstly, we obtain a time discrete scheme by approximating the time derivative via a finite difference formula, then we use the SMRPI approach to approximate the spatial derivatives. This method is based on a combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which act as basis functions in the frame of SMRPI. In the current work, to eliminate the nonlinearity, a simple predictor–corrector (P–C) scheme is performed. The effect of parameters and conditions are studied by considering the well-known Schnakenberg model.

Keywords

Turing systems Schnakenberg model Spectral meshless radial point interpolation (SMRPI) method Radial basis function Finite difference method 

Notes

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper. The authors also acknowledge financial support from the Imam Khomeini International University project IKIU-11829.

References

  1. 1.
    Zhu J, Zhang Y-T, Newman SA, Alber M (2009) Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J Sci Comput 40(1–3):391–418MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39CrossRefzbMATHGoogle Scholar
  4. 4.
    Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48(4):1695–1700CrossRefGoogle Scholar
  5. 5.
    Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81(3):389–400MathSciNetCrossRefGoogle Scholar
  6. 6.
    Thomas D (1975) Artificial enzyme membranes, transport, memory, and oscillatory phenomena. In: Thomas D, Kernevez JP (eds) Analysis and control of immobilized enzyme systems. Springer, Berlin, Heidelberg, New York, pp 115–150Google Scholar
  7. 7.
    Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem Eng Sci 38(1):29–43CrossRefGoogle Scholar
  8. 8.
    Gray P, Scott SK (1984) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A+ 2B\(\rightarrow\) 3B; B\(\rightarrow\) C. Chem Eng Sci 39(6):1087–1097CrossRefGoogle Scholar
  9. 9.
    Aragón JL, Torres M, Gil D, Barrio RA, Maini PK (2002) Turing patterns with pentagonal symmetry. Phys Rev E 65(5):051913MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aragón JL, Varea C, Barrio RA, Maini PK (1998) Spatial patterning in modified turing systems: application to pigmentation patterns on marine fish. Forma 13(3):213–221Google Scholar
  11. 11.
    Barrio RA, Varea C, Aragón JL, Maini PK (1999) A two-dimensional numerical study of spatial pattern formation in interacting turing systems. Bull Math Biol 61(3):483–505CrossRefzbMATHGoogle Scholar
  12. 12.
    Barrio RA, Maini PK, Aragón JL, Torres M (2002) Size-dependent symmetry breaking in models for morphogenesis. Phys D Nonlinear Phenom 168:61–72MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37(1):8–14MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Murray JD (1993) Mathematical biology. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  15. 15.
    Hundsdorfer W, Verwer JG (2013) Numerical solution of time-dependent advection-diffusion-reaction equations. Springer Science & Business Media, New YorkzbMATHGoogle Scholar
  16. 16.
    Kernevez JP, Thomas D (1975) Numerical analysis and control of some biochemical systems. Appl Math Optim 1(3):222–285MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Twizell EH, Gumel AB, Cao Q (1999) A second-order scheme for the Brusselator reaction–diffusion system. J Math Chem 26(4):297–316MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J Comput Phys 225(1):100–119MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve turing models in the biological pattern formation. Comput Math Appl 62(12):4322–4336MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Madzvamuse A, Chung AHW (2014) Fully implicit time-stepping schemes and non-linear solvers for systems of reaction–diffusion equations. Appl Math Comput 244:361–374MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sladek V, Sladek J, Shirzadi A (2015) The local integral equation method for pattern formation simulations in reaction–diffusion systems. Eng Anal Bound Elem 50:329–340MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Campagna R, Cuomo S, Giannino F, Severino G, Toraldo G (2018) A semi-automatic numerical algorithm for turing patterns formation in a reaction-diffusion model. IEEE Access 6:4720–4724CrossRefGoogle Scholar
  24. 24.
    Campagna R, Brancaccio M, Cuomo S, Mazzoleni S, Russo L, Siettos K, Giannino F (2017) Numerical approaches to model perturbation fire in turing pattern formations. In: AIP conference proceedings, vol 1906, p 100011. AIP PublishingGoogle Scholar
  25. 25.
    Burrage K, Hale N, Kay D (2012) An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J Sci Comput 34(4):A2145–A2172MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhuang P, Liu F, Turner I, YuanTong G (2014) Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl Math Model 38(15):3860–3870MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Katsikadelis JT (2011) The BEM for numerical solution of partial fractional differential equations. Comput Math Appl 62(3):891–901MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  29. 29.
    Fasshauer GE, Zhang JG (2007) On choosing optimal shape parameters for RBF approximation. Numer Algorithms 45(1–4):345–368MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shivanian E, Jafarabadi A (2017) Numerical solution of two-dimensional inverse force function in the wave equation with nonlocal boundary conditions. Inverse Probl Sci Eng 25(12):1743–1767MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Shivanian E, Jafarabadi A (2018) An inverse problem of identifying the control function in two and three-dimensional parabolic equations through the spectral meshless radial point interpolation. Appl Math Comput 325:82–101MathSciNetzbMATHGoogle Scholar
  32. 32.
    Shivanian E, Jafarabadi A (2017) Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains. Numer Methods Partial Differ Equ 33(4):1043–1069CrossRefzbMATHGoogle Scholar
  33. 33.
    Jafarabadi A, Shivanian E (2018) Numerical simulation of nonlinear coupled Burgers equation through meshless radial point interpolation method. Eng Anal Bound Elem 95:187–199MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shivanian E, Jafarabadi A (2017) Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442CrossRefzbMATHGoogle Scholar
  37. 37.
    Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181(4):772–786MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsImam Khomeini International UniversityQazvinIran

Personalised recommendations