Advertisement

A new fusion of salp swarm with sine cosine for optimization of non-linear functions

  • Narinder Singh
  • Le Hoang SonEmail author
  • Francisco Chiclana
  • Jean-Pierre Magnot
Original Article

Abstract

The foremost objective of this article is to develop a novel hybrid powerful meta-heuristic that integrates the salp swarm algorithm with sine cosine algorithm (called HSSASCA) for improving the convergence performance with the exploration and exploitation being superior to other comparative standard algorithms. In this method, the position of salp swarm in the search space is updated using the position equations of sine cosine; hence the best and possible optimal solutions are obtained based on the sine or cosine function. During this process, each salp adopts the information sharing strategy of sine and cosine functions to improve their exploration and exploitation ability. The inspiration behind incorporating changes in salp swarm optimizer algorithm is to assist the basic approach to avoid premature convergence and to rapidly guide the search towards the probable search space. The algorithm is validated on 22 standard mathematical optimization functions and 3 applications namely the 3-bar truss, tension/compression spring and cantilever beam design problems. The aim is to examine and confirm the valuable behaviors of HSSASCA in searching the best solutions for optimization functions. The experimental results reveal that HSSASCA algorithm achieves the highest accuracies with least runtime in comparison with the others.

Keywords

Standard global optimization functions Heuristic hybridization Salp swarm algorithm Sine cosine algorithm Exploration and exploitation 

Notes

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions, which helped to improve the quality of the paper significantly.

References

  1. 1.
    Abdel-Basset M, Gunasekaran M, El-Shahat D, Mirjalili S (2018) A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Futur Gener Comput Syst 85:129–145CrossRefGoogle Scholar
  2. 2.
    Abido MA (2002) Optimal power flow using tabu search algorithm. Electric Power Compon Syst 30:469–483CrossRefGoogle Scholar
  3. 3.
    Abtahi AR, Bijari A (2017) A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems. J Ind Eng Int 13(1):93–105CrossRefGoogle Scholar
  4. 4.
    Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRefGoogle Scholar
  5. 5.
    Ali M, Son LH, Thanh ND, Van Minh N (2017) A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures. Appl Soft Comput.  https://doi.org/10.1016/j.asoc.2017.10.012 CrossRefGoogle Scholar
  6. 6.
    Ali M, Son LH, Khan M, Tung NT (2018) Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Syst Appl 91:434–441CrossRefGoogle Scholar
  7. 7.
    Amal L, Son LH, Chabchoub H (2018) SGA: spatial GIS-based genetic algorithm for route optimization of municipal solid waste collection. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-2826-0 CrossRefGoogle Scholar
  8. 8.
    Awais M, Javaid N, Mateen A, Khan N, Mohiuddin A, Rehman MHA (2018) In the proceeding of 32nd international conference on advanced information networking and applications, IEEE, pp 882–891Google Scholar
  9. 9.
    Azad M, Bozorg-Haddad O, Chu X (2018) Flower pollination algorithm (FPA). In: Advanced optimization by nature-inspired algorithms. Springer, Singapore, pp 59–67Google Scholar
  10. 10.
    Bakirtzis AG, Biskas P, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. Power Syst IEEE Trans 17(2):229–236CrossRefGoogle Scholar
  11. 11.
    Barraza J, Rodriguez L, Castillo O, Melin P, Valdez F. A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J Optim 2018:1–18 (Article id: 6495362) Google Scholar
  12. 12.
    Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput l(36):152–164CrossRefGoogle Scholar
  13. 13.
    Ben-Tal A, El haoui L, Nemirovski A (2009) Robust optimization. Princeton series in applied mathematics. Princeton University Press, Princeton, pp 9–16Google Scholar
  14. 14.
    Bouchekara HREH (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24:879–888CrossRefGoogle Scholar
  15. 15.
    Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new meta-heuristic optimization algorithm. Comput Struct 139:98–112CrossRefGoogle Scholar
  16. 16.
    Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Meth Eng 39(5):829–846MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chowdhury BH (1992) Towards the concept of integrated security: optimal dispatch under static and dynamic security constraints. Electric Power Syst Res 25:213–225CrossRefGoogle Scholar
  18. 18.
    Chuan PM, Son LH, Ali M, Khang TD, Dey N (2018) Link prediction in co-authorship networks based on hybrid content similarity metric. Appl Intell 48(8):2470–2486CrossRefGoogle Scholar
  19. 19.
    Chung TS, Li YZ (2001) A hybrid GA approaches for OPF with consideration of FACTS devices. IEEE Power Eng Rev 20:47–50CrossRefGoogle Scholar
  20. 20.
    Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38:1012–1024CrossRefGoogle Scholar
  21. 21.
    Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRefGoogle Scholar
  22. 22.
    Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95CrossRefGoogle Scholar
  23. 23.
    Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M AZ, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67CrossRefGoogle Scholar
  24. 24.
    Farnad B, Jafarian A (2018) A new nature-inspired hybrid algorithm with a penalty method to solve constrained problem. Int J Comput Methods 15(08):1850069MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fouad A (2017) A hybrid Grey Wolf Optimizer and genetic algorithm for minimizing potential energy function. Memet Comput 9(9):1–13MathSciNetGoogle Scholar
  26. 26.
    Gandomi AH, Yang XS, Alavi AH, Talatahari H (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255CrossRefGoogle Scholar
  27. 27.
    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRefGoogle Scholar
  28. 28.
    Giap CN, Son LH, Chiclana F (2018) Dynamic structural neural network. J Intell Fuzzy Syst 34:2479–2490CrossRefGoogle Scholar
  29. 29.
    Hemanth DJ, Anitha J, Son LH (2018) Brain signal based human emotion analysis by circular back propagation and Deep Kohonen Neural Networks. Comput Electr Eng 68:170–180CrossRefGoogle Scholar
  30. 30.
    Hemanth DJ, Anitha J, Popescu DE, Son LH (2018) A modified genetic algorithm for performance improvement of transform based image steganography systems. J Intell Fuzzy Syst 35(1):197–209CrossRefGoogle Scholar
  31. 31.
    Hsun LR, Ren TS, Tone CY Tseng W-T (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81(7):1466–1474CrossRefGoogle Scholar
  32. 32.
    Hu C, Xia Y, Zhang J (2018) Adaptive operator quantum-behaved pigeon-inspired optimization algorithm with application to UAV path planning. Algorithms MDPI 12(1):1–16MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kalaiselvi K, Kumar V, Chandrasekar K (2010) Enhanced genetic algorithm for optimal electric power flow using TCSC and TCPS. In: Proceedings of the world (II)Google Scholar
  34. 34.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948Google Scholar
  35. 35.
    Le T, Son LH, Vo MT, Lee MY, Baik SW (2018) A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry 10(7):250 (20738994) CrossRefGoogle Scholar
  36. 36.
    Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640CrossRefGoogle Scholar
  37. 37.
    Liu H, Hua G, Yin H, Xu Y (2018) An intelligent grey wolf optimizer algorithm for distributed compressed sensing. Comput Intell Neurosci 1–10 (Article id: 1723191) Google Scholar
  38. 38.
    Louati A, Son LH, Chabchoub H (2018) Smart routing for municipal solid waste collection: a heuristic approach. J Ambient Intell Human Comput.  https://doi.org/10.1007/s12652-018-0778-3 CrossRefGoogle Scholar
  39. 39.
    Lu Y, Zhou Y, Wu X (2017) A hybrid lightning search algorithm-simplex method for global optimization. Discret Dyn Nat Soc 2017(2017):1–23 (id: 8342694) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetzbMATHGoogle Scholar
  41. 41.
    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst Elsevier 89:228–249CrossRefGoogle Scholar
  42. 42.
    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw Elsevier 83:80–98CrossRefGoogle Scholar
  43. 43.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 4:1053–1073CrossRefGoogle Scholar
  44. 44.
    Mirjalili S (2016) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105:30–47Google Scholar
  45. 45.
    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst Elsevier 96:120–133CrossRefGoogle Scholar
  46. 46.
    Mirjalili S (2016) The whale optimization algorithm. Adv Eng Softw 9:51–67CrossRefGoogle Scholar
  47. 47.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimization. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  48. 48.
    Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 2:495–513CrossRefGoogle Scholar
  49. 49.
    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRefGoogle Scholar
  50. 50.
    Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solutions Fractals 78:10–21MathSciNetCrossRefGoogle Scholar
  51. 51.
    Ngan RT, Son LH, Cuong BC, Ali M (2018) H-max distance measure of intuitionistic fuzzy sets in decision making. Appl Soft Comput 69:393–425CrossRefGoogle Scholar
  52. 52.
    Pandiri V, Singh A (2018) A swarm intelligence approach for the colored traveling salesman problem. Appl Intell.  https://doi.org/10.1007/s10489-018-1216-0 CrossRefGoogle Scholar
  53. 53.
    Pham BT, Son LH, Hoang TA, Nguyen DM, Bui DT (2018) Prediction of shear strength of soft soil using machine learning methods. Catena 166:181–191CrossRefGoogle Scholar
  54. 54.
    Rao MR, Babu NVN (2013) Optimal power flow using cuckoo optimization algorithm. Ijareeie 2:4213–4218Google Scholar
  55. 55.
    Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396CrossRefGoogle Scholar
  56. 56.
    Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612CrossRefGoogle Scholar
  57. 57.
    Sarbazfard S, Jafarian A (2016) A hybrid algorithm based on firefly algorithm and differential evolution for global optimization. Int J Adv Comput Sci Appl 7(6):95–106Google Scholar
  58. 58.
    Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 6:1–20Google Scholar
  59. 59.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRefGoogle Scholar
  60. 60.
    Singh N (2018) A modified variant of grey wolf optimizer. International Journal of Science & Technology, Scientia Iranica. http://scientiairanica.sharif.edu/?_action=article&keywords=A+Modified+Variant+of+Grey+Wolf+Optimizer (in press)
  61. 61.
    Singh N, Hachimi H (2018) A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math Comput Appl 23(14):1–32MathSciNetzbMATHGoogle Scholar
  62. 62.
    Singh N, Singh SB (2011) One half global best position particle swarm optimization algorithm. Int J Sci Eng Res 2(8):1–10Google Scholar
  63. 63.
    Singh N, Singh SB (2012) Personal best position particle swarm optimization. J Appl Comput Sci Math 12(6):69–76Google Scholar
  64. 64.
    Singh N, Singh SB (2017) A modified mean grey wolf optimization approach for benchmark and biomedical problems. Evol Bioinform 13:1–28CrossRefGoogle Scholar
  65. 65.
    Singh N, Singh SB (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math :1–15 (ID 2030489)Google Scholar
  66. 66.
    Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problem. Eng Sci Technol Int J 20:1586–1601CrossRefGoogle Scholar
  67. 67.
    Singh N, Singh S, Singh SB (2012) Half mean particle swarm optimization algorithm. Int J Sci Eng Res 3(8):1–9Google Scholar
  68. 68.
    Singh N, Singh S, Singh SB (2017) A new hybrid MGBPSO-GSA variant for improving function optimization solution in search space. Evol Bioinform 13:1–13CrossRefGoogle Scholar
  69. 69.
    Singh K, Singh K, Son LH, Aziz A (2018) Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Comput Netw 138:90–107CrossRefGoogle Scholar
  70. 70.
    Sinsupan N, Leeton U, Kulworawanichpong T (2010) Application of harmony search to optimal Power Flow Problems. In: Advances in Energy Engineering (ICAEE), 2010 International Conference on, IEEE, pp 219–222Google Scholar
  71. 71.
    Soares J, Sousa T. Vale ZA, Morais H, Faria P (2011) Ant colony search algorithm for the optimal power flow problem. In: Power and Energy Society General Meeting, 2011 IEEE, IEEE pp 1–8Google Scholar
  72. 72.
    Son LH, Fujita H (2018) Neural-fuzzy with representative sets for prediction of student performance. Appl Intell 2018:1–8Google Scholar
  73. 73.
    Son LH, Chiclana F, Kumar R, Mittal M, Khari M, Chatterjee JM, Baik SW (2018) ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowl Based Syst 154:68–80CrossRefGoogle Scholar
  74. 74.
    Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564CrossRefGoogle Scholar
  75. 75.
    Tawhid MA, Savsani V (2017) Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput Appl 1–15Google Scholar
  76. 76.
    Vidal T, Crainic TG, Gendreau M, Prins C (2013) A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-window. Comput Oper Res Elsevier 40(1):475–489MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar
  78. 78.
    Yang XS (2014) Nature-inspired optimization algorithms. Book Elsevier Science Publishers B.V, Amsterdam. https://dl.acm.org/citation.cfm?id=2655295. Accessed 26 July 2016
  79. 79.
    Yang Y, Yang B, Niu M (2017) Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm. Appl Intell.  https://doi.org/10.1007/s10489-017-1034-9 CrossRefGoogle Scholar
  80. 80.
    Yuan X, Dai X, Zhao J, He Q (2014) On a novel multi-swarm fruit fly optimization algorithm and its application. Appl Math Comput 233(3):260–271MathSciNetzbMATHGoogle Scholar
  81. 81.
    Zamli KZ, Din F, Ahmed SB, Bures M (2018) A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem. PLoS One 13(5):e0195675CrossRefGoogle Scholar
  82. 82.
    Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074CrossRefGoogle Scholar
  83. 83.
    Zhao X, Hwang JN, Fang Z, Wang G (2018) Gradient-based adaptive particle swarm optimizer with improved extremal optimization. Appl Intell.  https://doi.org/10.1007/s10489-018-1228-9 CrossRefGoogle Scholar
  84. 84.
    Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res Elsevier 55(1):1–11MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPunjabi UniversityPatialaIndia
  2. 2.VNU Information Technology InstituteVietnam National UniversityHanoiVietnam
  3. 3.School of Computer Science and InformaticsDe Montfort UniversityThe GatewayUK
  4. 4.LAREMAUniversitéd’ AngersAngers Cedex 01France

Personalised recommendations