Advertisement

Crossing weighted uncertainty scenarios assisted distribution-free metamodel-based robust simulation optimization

  • Amir ParnianifardEmail author
  • A. S. Azfanizam
  • M. K. A. Ariffin
  • M. I. S. Ismail
Original Article

Abstract

In practice, computer simulations cannot be perfectly controlled because of the inherent uncertainty caused by variability in the environment (e.g., demand rate in the inventory management). Ignoring this source of variability may result in sub-optimality or infeasibility of optimal solutions. This paper aims at proposing a new method for simulation–optimization when limited knowledge on the probability distribution of uncertain variables is available and also limited budget for computation is allowed. The proposed method uses the Taguchi robust terminology and the crossed array design when its statistical techniques are replaced by design and analysis of computer experiments and Kriging. This method offers a new approach for weighting uncertainty scenarios for such a case when probability distributions of uncertain variables are unknown without available historical data. We apply a particular bootstrapping technique when the number of simulation runs is much less compared to the common bootstrapping techniques. In this case, bootstrapping is undertaken by employing original (i.e., non-bootstrapped) data, and thus, it does not result in a computationally expensive task. The applicability of the proposed method is illustrated through the Economic Order Quantity (EOQ) inventory problem, according to uncertainty in the demand rate and holding cost.

Keywords

Metamodeling Unknown distribution Kriging Bootstrapping Robust design Simulation optimization Uncertainty 

Notes

References

  1. 1.
    Viana FAC, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52(4):670–690Google Scholar
  2. 2.
    Kleijnen JPC (2015) Design and analysis of simulation experiments, 2nd edn. Springer, Cham.  https://doi.org/10.1007/978-3-319-18087-8 zbMATHGoogle Scholar
  3. 3.
    Dellino G, Meloni C (2015) Uncertainty management in simulation—optimization of complex systems. Springer, Boston, MA, USA.  https://doi.org/10.1007/978-1-4899-7547-8 zbMATHGoogle Scholar
  4. 4.
    Cao L, Jiang P, Chen Z, Zhou Q, Zhou H (2015) Metamodel assisted robust optimization under interval uncertainly based on reverse model. IFAC PapersOnLine 48(28):1178–1183Google Scholar
  5. 5.
    Ben-Tal LE, Ghaoui, Nemirovski A (2009) Robust optimization. Princeton University Press, New JerseyzbMATHGoogle Scholar
  6. 6.
    Figueira G, Almada-Lobo B (2014) Hybrid simulation optimization methods a taxonomy and discussion. Simul Model Pract Theory 46:118–134Google Scholar
  7. 7.
    Kleijnen JPC, Mehdad E (2017) Estimating the variance of the predictor in stochastic Kriging. Simul Model Pract Theory 66 (2016):166–173Google Scholar
  8. 8.
    Amaran S, Sahinidis NV, Sharda B, Bury SJ (2016) Simulation optimization: a review of algorithms and applications. Ann Oper Res 240(1):351–380MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kleijnen JPC (1993) Simulation and optimization in production planning. Decis Support Syst 9(3):269–280Google Scholar
  10. 10.
    Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13Google Scholar
  11. 11.
    Kleijnen JPC, Gaury E (2003) Short-term robustness of production management systems: a case study. Eur J Oper Res 148(2):452–465MathSciNetzbMATHGoogle Scholar
  12. 12.
    Park S, Antony J (2008) Robust design for quality engineering and six sigma. World Scientific Publishing Company, New JerseyzbMATHGoogle Scholar
  13. 13.
    Phadke MS (1989) Quality engineering using robust design, Prentice Hall PTR, NJ, USAGoogle Scholar
  14. 14.
    Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501MathSciNetzbMATHGoogle Scholar
  15. 15.
    Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150zbMATHGoogle Scholar
  16. 16.
    Kleijnen JPC (2017) Regression and Kriging metamodels with their experimental designs in simulation—a review. Eur J Oper Res 256(1):1–6MathSciNetzbMATHGoogle Scholar
  17. 17.
    Barton RR (1992) Metamodels for simulation input-output relations. In: Proc. 24th Conf. Winter Simul.—WSC’92, no. January, pp. 289–299Google Scholar
  18. 18.
    Bates RA, Kenett RS, Steinberg DM, Wynn HP (2006) Robust design using computer experiments. Prog Ind Math ECMI 8:564–568zbMATHGoogle Scholar
  19. 19.
    Lee KH, Park GJ (2006) A gobal robust optimization using kriging based approximation model. JSME Int J 49 (3):779–788Google Scholar
  20. 20.
    Viana FAC (2016) A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int 32(5):1975–1985Google Scholar
  21. 21.
    Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. J S Afr Inst Min Metall 52(6):119–139Google Scholar
  22. 22.
    Jalali H, Van Nieuwenhuyse I (2015) Simulation optimization in inventory replenishment: A classification. IIE Trans 47(11):1217–1235Google Scholar
  23. 23.
    Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33):3190–3218MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lehman JS, Santner TJ, Notz WI (2004) Designing computer experiments to determine robust control variables. Stat Sin 14(1):571–590MathSciNetzbMATHGoogle Scholar
  25. 25.
    Miettinen KM (1998) Nonlinear multiobjective optimization. Springer Science and Business Media, New York.  https://doi.org/10.1007/978-1-4615-5563-6 zbMATHGoogle Scholar
  26. 26.
    Van Beers WCM, Kleijnen JPC (2004) Kriging interpolation in simulation: a survey. In: Proc. 2004 Winter Simul. Conf. vol. 1, pp. 107–115Google Scholar
  27. 27.
    Yu, Zeng B (2015) Exploring the modeling capacity of two-stage robust optimization: variants of robust unit commitment model. IEEE Trans Power Syst 30(1):109–122MathSciNetGoogle Scholar
  28. 28.
    Myers R, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments, 4th edn. Wiley, New York, ISBN: 1118916026, 9781118916025zbMATHGoogle Scholar
  29. 29.
    Moghaddam S, Mahlooji H (2016) Robust simulation optimization using $φ$-divergence. Int J Ind Eng Comput 7(4):517–534Google Scholar
  30. 30.
    Yanikoglu DD, Hertog, Kleijnen JPC (2016) Robust dual response optimization. IIE Trans 48(3):298–312Google Scholar
  31. 31.
    Kleijnen PC, Mehdad E, Van Beers WCM (2012) Convex and monotonic bootstrapped Kriging. In: Proc.—Winter Simul. Conf., no. AugustGoogle Scholar
  32. 32.
    Dellino G, Kleijnen JPC, Meloni C (2012) Robust optimization in simulation: Taguchi and Krige combined. INFORMS J Comput 24(3):471–484MathSciNetzbMATHGoogle Scholar
  33. 33.
    Cheng RC (2006) Resampling methods. Handbooks Oper Res Manag Sci 13:415–453Google Scholar
  34. 34.
    Kleijnen PC, van Beers WCM (2013) Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations. J Oper Res Soc 64(5):708–717Google Scholar
  35. 35.
    Kumar SA, Suresh N (2009) Operations management. New Age International, New DelhiGoogle Scholar
  36. 36.
    Zipkin PH (2000) Foundations of inventory management. McGraw-Hill, New YorkzbMATHGoogle Scholar
  37. 37.
    Parnianifard A, Azfanizam A, Ariffin M, Ismail M, Ebrahim N (2019) Recent developments in metamodel based robust black-box simulation optimization: an overview. Decis Sci Lett 8(1):17–44Google Scholar
  38. 38.
    Hillier FS (2012) Introduction to operations research. Tata McGraw-Hill Education, New YorkzbMATHGoogle Scholar
  39. 39.
    Kleijnen JPC, Mehdad E (2014) Multivariate versus univariate Kriging metamodels for multi-response simulation models. Eur J Oper Res 236(2):573–582MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kleijnen JPC (2005) An Overview of the design and analysis of simulation experiments for sensitivity analysis. Eur J Oper Res 164(2):287–300MathSciNetzbMATHGoogle Scholar
  41. 41.
    Li YF, Ng SH, Xie M, Goh TN (2010) A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Appl Soft Comput 10(4):1257–1273Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSeri KembanganMalaysia

Personalised recommendations