Engineering with Computers

, Volume 31, Issue 4, pp 775–790 | Cite as

3D Reconstruction of blood vessels

  • Ali Al Moussawi
  • Cedric Galusinski
  • Christian Nguyen
Original Article


The aim of this paper is to achieve the 3D reconstruction of blood vessels from a limited number of 2D transversal cuts obtained from scanners. This is motivated by the fact that data can be missing. The difficulty of this work is in connecting the blood vessels between some widely spaced cuts to produce the graph corresponding to the network of vessels. We identify the vessels on each transversal cut as a mass to be transported along a graph which allows to determine the bifurcation points of vessels. Specifically, we are interested in branching transportation Brasco et al. (SIAM J Math Anal 43(2):1023–1040, 2011) to model an optimized graph associated with the network of vessels. At this stage, we are able to reconstruct a 3D level set function by using the 2D level set functions given by the transversal cuts and the graph information. When the whole scanner data are available, a global reconstruction is proposed in a simple manner, without using the mass transfer problem.


Medical imaging Geometry graph Level set function Branching transportation 3D reconstruction 



This work has been supported by the French National Research Agency (ANR) through the COSINUS program (project CARPEINTER ANR-08-COSI-002).


  1. 1.
    Benech J (2008) Spécificité de la mise en oeuvre de la tomographie dans le domaine de l’arc électrique-Validité en imagerie médicale. PhD thesis, Université de Toulouse, Université Toulouse III-Paul SabatierGoogle Scholar
  2. 2.
    Bernot M (2005) Transport optimal et irrigation. PhD thesis, École normale supérieure de Cachan-ENS CachanGoogle Scholar
  3. 3.
    Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. IOP Publishing, BristolCrossRefzbMATHGoogle Scholar
  4. 4.
    Brasco L, Buttazzo G, Santambrogio F (2011) A benamou-brenier approach to branched transport. SIAM J Math Anal 43(2):1023–1040MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chan TF, Vese LA (2001) A level set algorithm for minimizing the mumford-shah functional in image processing. In: Proceedings of variational and level set methods in computer vision, IEEE workshop 2001, pp 161–168Google Scholar
  6. 6.
    Cottet G-H, Maitre E (2004) A level-set formulation of immersed boundary methods for fluid-structure interaction problems. Comptes Rendus Mathematique 338(7):581–586MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Evans JL, Ng K-H, Wiet MJ, Vonesh WB, Burns MG, Radvany BJ, Kane CJ, Davidson SI, Roth BL et al (1996) Accurate three-dimensional reconstruction of intravascular ultrasound data spatially correct three-dimensional reconstructions. Circulation 93(3):567–576CrossRefGoogle Scholar
  8. 8.
    Finet G, Maurincomme E, Tabib A, Crowley RJ, Magnin I, Roriz R, Beaune J, Amiel M (1993) Artifacts in intravascular ultrasound imaging: analyses and implications. Ultrasound Med Biol 19(7):533–547CrossRefGoogle Scholar
  9. 9.
    Galusinski C, Nguyen C (2014) Skeleton and level set for channel construction and flow simulation. Eng Comput 1–15. doi:  10.1007/s00366-014-0351-4
  10. 10.
    Garreau M, Coatrieux JL, Collorec R, Chardenon C (1991) A knowledge-based approach for 3D reconstruction and labeling of vascular networks from biplane angiographic projections. Med Imaging IEEE Trans 10(2):122–131CrossRefGoogle Scholar
  11. 11.
    Gilbert EN (1967) Minimum cost communication networks. Bell Syst Tech J 46(9):2209–2227CrossRefGoogle Scholar
  12. 12.
    Guerra PJ, Rodrıguez-Salinas B (1996) A general solution of the Monge–Kantorovich mass-transfer problem. J Math Anal Appl 202(2):492–510MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jourdain M, Meunier J, Sequeira J, et al (2008) A robust 3-D IVUS transducer tracking using single-plane cineangiography. Inf Technol Biomed IEEE Trans 12(3):307–314 Google Scholar
  14. 14.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRefGoogle Scholar
  15. 15.
    Kenet RO, Herrold EM, Tearney GJ, Wong KK, Hill JP, Borer JS (1998) 3D quantitative assessment of coronary luminal morphology using biplane digital angiography. In: Proceedings of computers in cardiology, IEEE, pp 13–17Google Scholar
  16. 16.
    Kitney RI, Moura L, Straughan K (1989) 3D visualization of arterial structures using ultrasound and voxel modelling. In: Proceedings of intravascular ultrasound, Springer, New York, pp 135–143Google Scholar
  17. 17.
    Maurincomme E, Magnin IE, Finet G, Goutte R (1992) Methodology for three-dimensional reconstruction of intravascular ultrasound images. In: Proceedings of medical imaging VI, International Society for optics and photonics, pp 26–34Google Scholar
  18. 18.
    Messenger JC, Chen SYJ, Carroll JD, Burchenal JEB, Kioussopoulos K, Groves BM (2000) 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int J Card Imaging 16(6):413–427CrossRefGoogle Scholar
  19. 19.
    Modica L, Mortola S (1977) Un esempio di \(\gamma\)-convergenza. Boll Un Mat Ital B (5) 14(1):285–299MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Murray CD (1926) The physiological principle of minimum work I: the vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3):207CrossRefGoogle Scholar
  22. 22.
    Oudet E, Santambrogio F (2011) A modica-mortola approximation for branched transport and applications. Arch Ration Mech Anal 201(1):115–142MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294CrossRefGoogle Scholar
  24. 24.
    Rosenfield K, Losordo DW, Ramaswamy K, Pastore JO, Langevin RE, Razvi S, Kosowsky BD, Isner JM (1991) Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 84(5):1938–1956CrossRefGoogle Scholar
  25. 25.
    Sethian JA (1999) Level set methods and fast marching methods. ISBN 0-521-64557-3Google Scholar
  26. 26.
    Senasli M, Garnero L, Herment A, Mousseaux E (1997) Reconstruction 3D de vaisseaux à partir d’un faible nombre de projections à l’aide de contours déformables. In Colloque sur le traitement du signal et des images, FRA, 1997\(\mathring{16}\). GRETSI, Groupe d’Etudes du Traitement du Signal et des ImagesGoogle Scholar
  27. 27.
    Sherknies D, Meunier J, Mongrain R, Tardif JC (2005) Three-dimensional trajectory assessment of an IVUS transducer from single-plane cineangiograms: a phantom study. Biomed Eng IEEE Trans 52(3):543-549 Google Scholar
  28. 28.
    Slager CJ, Wentzel JJ, Oomen JA, Schuurbiers JC, Krams R, Von Birgelen C, Tjon A, Serruys PW, De Feyter PJ (1997) True reconstruction of vessel geometry from combined x-ray angiographic and intracoronary ultrasound data. Sem Interv Cardiol SIIC 2:43–47Google Scholar
  29. 29.
    Slager CJ, Wentzel JJ, Schuurbiers JCH, Oomen JAF, Kloet J, Krams R, Von Birgelen C, Van Der Giessen WJ, Serruys PW, De Feyter PJ (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and ivus (angus) and its quantitative validation. Circulation 102(5):511–516CrossRefGoogle Scholar
  30. 30.
    Sureda F, Bloch I, Pellot C, Herment A (1994) Reconstruction 3D de vaisseaux sanguins par fusion de données à partir d’images angiographiques et échographiques. Traitement du Signal 11(6):525–540Google Scholar
  31. 31.
    Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and centerlines. In VISSYM ’02: Proceedings of the symposium on Data Visualisation 2002, pages 251-ff, Aire-la-Ville, Switzerland, Switzerland. Eurographics AssociationGoogle Scholar
  32. 32.
    ten Hoff H, Korbijn A, Smit ThH, Klinkhamer JFF, Bom N (1989) Imaging artifacts in mechanically driven ultrasound catheters. Int J Card Imaging 4:195–199 Google Scholar
  33. 33.
    Van Tran L, Bahn RC, Sklansky J (1992) Reconstructing the cross sections of coronary arteries from biplane angiograms. Med Imaging IEEE Trans 11(4):517–529CrossRefGoogle Scholar
  34. 34.
    Voronetska K, Vinay G, Wachs A, Caltagirone J-P (2011) Méthode level-set dans la modélisation des écoulements diphasiques. 20ème Congrès Français de Mécanique, 28 août/2 sept. 2011–25044 Besançon, France (FR)Google Scholar
  35. 35.
    Webb S (2009) The contribution, history, impact and future of physics in medicine. Acta Oncol 48(2):169–177CrossRefGoogle Scholar
  36. 36.
    Xia Q (2003) Optimal paths related to transport problems. Commun Contemp Math 5(02):251–279MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ali Al Moussawi
    • 1
  • Cedric Galusinski
    • 1
  • Christian Nguyen
    • 1
  1. 1.IMATH, Université de ToulonToulonFrance

Personalised recommendations