Engineering with Computers

, Volume 31, Issue 2, pp 305–324 | Cite as

Finite element mesh generation for subsurface simulation models

  • Antonio Carlos de Oliveira Miranda
  • William Wagner Matos Lira
  • Ricardo Cavalcanti Marques
  • Andre Maues Brabo Pereira
  • Joaquim B. Cavalcante-Neto
  • Luiz Fernando Martha
Original Article

Abstract

This paper introduces a methodology for creating geometrically consistent subsurface simulation models, and subsequently tetrahedral finite element (FE) meshes, from geometric entities generated in gOcad software. Subsurface simulation models have an intrinsic heterogeneous characteristic due to the different geomechanics properties of each geological layer. This type of modeling should represent geometry of natural objects, such as geological horizons and faults, which have faceted representations. In addition, in subsurface simulation modeling, lower-dimension degenerated parts, such as dangling surfaces, should be represented. These requirements pose complex modeling problems, which, in general, are not treated by a generic geometric modeler. Therefore, this paper describes four important modeling capabilities that are implemented in a subsurface simulation modeler: surface re-triangulation, surface intersection, automatic volume recognition, and tetrahedral mesh generation. Surface re-triangulation is used for regenerating the underlying geometric support of surfaces imported from gOcad and of surface patches resulting from intersection. The same re-triangulation algorithm is used for generating FE surface meshes. The proposed modeling methodology combines, with some adaptation, meshing algorithms previously published by the authors. Two novel techniques are presented, the first for surface intersection and the second for automatic volume recognition. The main contribution of the present work is the integration of such techniques through a methodology for the solution of mesh generation problems in subsurface simulation modeling. An example illustrates the capabilities of the proposed methodology. Shape quality of generated triangular surface and tetrahedral meshes, as well as the efficiency of the 3D mesh generator, is demonstrated by means of this example.

Keywords

Geometric modeling Subsurface modeling Mesh generation Surface intersection Finite elements 

References

  1. 1.
  2. 2.
    Mallet JL (1997) Discrete modeling for natural objects. Math Geol 29(2):199–219CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Gemmer L, Huuse M, Clausen OR, Nielsen SB (2002) Mid-Paleocene palaeogeography of the eastern North Sea basin: integrating geological evidence and 3D geodynamic modelling. Basin Res 14:329–346CrossRefGoogle Scholar
  4. 4.
    Wu Q, Xu H (2003) An approach to computer modeling and visualization of geological faults in 3D. Comput Geosci 29:503–509CrossRefGoogle Scholar
  5. 5.
    Wu Q, Xu H (2001) A framework modeling of geological related spatial data in 3D scene. In: Sixth international symposium on future software technology, Zhengzhou, China, pp 252–257Google Scholar
  6. 6.
    Martelet G, Calcagno P, Gumiaux C, Truffert C, Bitri A, Gapais D, Brun JP (2004) Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France). Tectonophysics 382:117–128CrossRefGoogle Scholar
  7. 7.
    Lixin W (2004) Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Comput Geosci 30:405–418CrossRefGoogle Scholar
  8. 8.
    Wu Q, Xu H, Zou X (2005) An effective method for 3D geological modeling with multi-source data integration. Comput Geosci 31:35–43CrossRefMATHGoogle Scholar
  9. 9.
    Qu H, Pan M, Wang Z, Wang B, Chai H, Xue S (2005)A new method for 3D geological reconstruction from intersected cross-sections. In: International symposium of remote sensing and space technology for multidiciplinary research and applicationGoogle Scholar
  10. 10.
    Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342:184–198CrossRefGoogle Scholar
  11. 11.
    Kaufmann O, Martin T (2008) 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput Geosci 34:278–290CrossRefGoogle Scholar
  12. 12.
    Zanchi A, Francesca S, Stefanoa Z, Simone S, Graziano G (2009) 3D reconstruction of complex geological bodies: examples from the Alps. Comput Geosci 35:49–69CrossRefGoogle Scholar
  13. 13.
    Ming J, MaoPan QuH, Ge Z (2010) GSIS: a 3D geological multi body modeling system from netty cross-sections with topology. Comput Geosci 36:756–767CrossRefGoogle Scholar
  14. 14.
    Xu N, Tian H, Kulatilake PHSW, Duan Q (2011) Building a three dimensional sealed geological model to use in numerical stress analysis software: a case study for a dam site. Comput Geotech 38:1022–1030CrossRefGoogle Scholar
  15. 15.
    Miranda ACO, Martha LF, Wawrzynek PA, Ingraffea AR (2009) Surface mesh regeneration considering curvatures. Eng Comput 25(2):207–219. doi:10.1007/s00366-008-0119-9 CrossRefGoogle Scholar
  16. 16.
    Cavalcante-Neto JB, Wawrzynek PA, Carvalho MTM, Martha LF, Ingraffea AR (2001) An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. Eng Comput 17(1):75–91CrossRefMATHGoogle Scholar
  17. 17.
    Baumgart BG (1975) A polyhedron representation for computer vision. AFISPS 44:589–596Google Scholar
  18. 18.
    Mäntylä M (1988) An introduction to solid modeling. Computer Science Press, RockvilleGoogle Scholar
  19. 19.
    Weiler KJ (1986) Topological structures for geometric modeling. PhD thesis, Rensselaer Polytechnic Institute, Troy, New YorkGoogle Scholar
  20. 20.
    de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry–algorithms and applications. Springer, BerlinMATHGoogle Scholar
  21. 21.
    Lohner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8:1135–1149CrossRefGoogle Scholar
  22. 22.
    Peraire J, Peiro J, Formaggia L, Morgan K, Zienkiewicz OC (1988) Finite Euler computation in three-dimensions. Int J Numer Methods Eng 26:2135–2159CrossRefMATHGoogle Scholar
  23. 23.
    Jin H, Tanner RI (1993) Generation of unstructured tetrahedral meshes by advancing front technique. Int J Numer Methods Eng 36(11):1805–1823CrossRefMATHGoogle Scholar
  24. 24.
    Moller P, Hansbo P (1995) On advancing front mesh generation in three dimensions. Int J Numer Methods Eng 38(21):3551–3569CrossRefMathSciNetGoogle Scholar
  25. 25.
    Chan CT, Anastasiou K (1997) Automatic tetrahedral mesh generation scheme by the advancing front method. Commun Numer Methods Eng 13(1):33–46CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Rassineux A (1998) Generation and optimization of tetrahedral meshes by advancing front technique. Int J Numer Methods Eng 41(4):651–674CrossRefMATHGoogle Scholar
  27. 27.
    Miranda ACO, Lira WWM, Cavalcante-Neto JB, Sousa RA, Martha LF (2013) A 3D adaptive mesh generation approach using geometric modeling with multi-regions and parametric surfaces. J Comput Inf Sci Eng 13(2):021002-1–021002-13. doi:10.1115/1.4024106 CrossRefGoogle Scholar
  28. 28.
    Foley TA, Nielson GM (1989) Knot selection for parametric spline interpolation. In: Mathematical methods in computer aided geometric design. Academic Press Professional, Inc., pp 261–272Google Scholar
  29. 29.
    Meagher D (1980) Octree Encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects, Computer. Rensselaer Polytechnic InstituteGoogle Scholar
  30. 30.
    Guttman A (1984) R trees: a dynamic index structure for spatial searching. In: ACM SIGMOD international conference on management of data, pp 47–57Google Scholar
  31. 31.
    Rudolf B (1971) Binary B-trees for virtual memory. In: ACM-SIGFIDET workshop, San Diego, California, pp 219–235Google Scholar
  32. 32.
    Löhner R (1996) Regridding surface triangulations. J Comput Phys 126 (1):1–10. doi:http://dx.doi.org/10.1006/jcph.1996.0115 Google Scholar
  33. 33.
    Schreiner J, Scheidegger CE, Fleishman S, Silva CT (2006) Direct (Re)meshing for efficient surface processing. Comput Graph Forum 25(3):527–536. doi:10.1111/j.1467-8659.2006.00972.x CrossRefGoogle Scholar
  34. 34.
    Lo SH (1995) Automatic mesh generator over intersecting surfaces. Int J Numer Methods Eng 38:943–954CrossRefMATHGoogle Scholar
  35. 35.
    Segura RJ, Feito FR (1998) An algorithm for determining intersection segment-polygon in 3D. Comput Graph 22(5):587–592CrossRefGoogle Scholar
  36. 36.
    Jiménez JJ, Segura RJ, Feito FR (2009) A robust segment-triangle intersection algorithm for interference tests. Comput Geom 43(5):474–492CrossRefGoogle Scholar
  37. 37.
    Shewchuk JR (1996) Robust adaptive floating-point geometric predicates. In: Twelfth annual symposium on computational geometry, pp 141–150Google Scholar
  38. 38.
    Shewchuk JR (1997) Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discret Comput Geom 18:305–363CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Preparata FP, Shamos MI (1990) Computational geometry: an introduction. Springer Verlag, New YorkGoogle Scholar
  40. 40.
    Miranda ACO, Cavalcante-Neto JB, Martha LF (1999) An algorithm for two-dimensional mesh generation for arbitrary regions with cracks. XII Brazilian symposium on computer graphics and image processing (Cat NoPR00481):29–38Google Scholar
  41. 41.
    Cavalcante-Neto JB, Martha LF, Wawrzynek PA, Ingraffea AR (2005) A back-tracking procedure for optimization of simplex meshes. Commun Numer Methods Eng 21(12):711–722CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Coelho LC (2006) MG-mesh generator, www.tecgraf.puc-rio.br/~lula/manual/mg.pdf. Tecgraf, Rio de Janeiro
  43. 43.
    Taubin G (1995) Curve and surface smoothing without shrinkage. In: Fifth international conference on computer vision, pp 852–857Google Scholar
  44. 44.
    Cavalcanti PR, Carvalho PCP, Martha LF (1997) Non-manifold modeling: an approach based on spatial subdivision. Comput Aided Des 29(3):209–220CrossRefGoogle Scholar
  45. 45.
    Krysl P (1996) Computational complexity of the advancing front triangulation. Eng Comput 12:16–22CrossRefGoogle Scholar
  46. 46.
    Bonet J, Peraire J (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int J Numer Methods Eng 31(1):1–17CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Gosselin S, Ollivier-Gooch C (2011) Tetrahedral mesh generation using delaunay refinement with non-standard quality measures. Int J Numer Methods Eng 87:795–820CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Klingner BM, Shewchuk (2007) Aggressive tetrahedral mesh improvement. In: 16th international meshing roundtable, pp 2–23Google Scholar
  49. 49.
    Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M (2005) Variational tetrahedral meshing. ACM Trans Graph 24(3):617–625CrossRefGoogle Scholar
  50. 50.
    Miranda ACO, Martha LF (2002) Mesh generation on high-curvature surfaces based on a background quadtree structure. In: proceedings of 11th international meshing roundtable 1:333–341Google Scholar
  51. 51.
    Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Canann SA, Tristano JR, Staten ML (1998) An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: 7th international mesh roundtable, pp 479–494Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Antonio Carlos de Oliveira Miranda
    • 1
  • William Wagner Matos Lira
    • 2
  • Ricardo Cavalcanti Marques
    • 3
  • Andre Maues Brabo Pereira
    • 4
  • Joaquim B. Cavalcante-Neto
    • 5
  • Luiz Fernando Martha
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of BrasíliaBrasiliaBrazil
  2. 2.Laboratory of Scientific Computing and Visualization-LCCV, Technology CenterFederal University of AlagoasMaceioBrazil
  3. 3.Department of Civil Engineering and Tecgraf - Technical-Scientific Software Development InstitutePontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Engineering SchoolFluminense Federal UniversityNiteróiBrazil
  5. 5.Department of ComputingFederal University of CearáFortalezaBrazil

Personalised recommendations