Engineering with Computers

, Volume 31, Issue 2, pp 237–257

Trimming of 3D solid finite element meshes: sheet metal forming tests and applications

  • P. D. Barros
  • A. J. Baptista
  • J. L. Alves
  • M. C. Oliveira
  • D. M. Rodrigues
  • L. F. Menezes
Original Article

Abstract

Over the last years, the numerical simulation of integrated processes has become the major challenge in virtual try-out of sheet metal components, including trimming operations that may occur between forming steps. Detailed simulation of trimming processes is a challenging task, particularly when integrated with other forming operations such as deep drawing or hemming. A simplified approach can be adopted in which elements outside the trim surface are deleted from the finite element (FE) model adjusting the remaining to the surface. Following this approach, the state variables are mapped from the old FE mesh to the new trimmed mesh to continue the simulation. This paper addresses this simplified approach to the trimming process exploring a previously presented algorithm (Finite Elem Anal Des 42: 1053–1060, Baptista et al. 2006), which allows the treatment of hexahedral finite element meshes. Particularly, it focuses on the performance evaluation of the implemented strategies for correcting the FE mesh to the trimming surface, including the treatment of pentahedral-shaped elements. Different correction and treatment strategies are evaluated on different types of meshes, based on numerical simulation results of simple mechanical tests: uniaxial tensile test and simple bending test. Finally, two practical applications are given where the local effect of the trimming algorithm is highlighted.

Keywords

Trimming Solid finite elements 3D hexahedral meshes Multi-step forming 

References

  1. 1.
    Baptista AJ, Alves JL, Rodrigues DM, Menezes LF (2006) Trimming of 3D solid finite element meshes using parametric surfaces: application to sheet metal forming. Finite Elem Anal Des 42:1053–1060. doi:10.1016/j.finel.2006.03.005 CrossRefGoogle Scholar
  2. 2.
    Choi TH, Choi S, Na KH, Bae HS, Chung WJ (2002) Application of intelligent design support system for multi-step deep drawing process. J Mater Process Technol 130–131:76–88. doi:10.1016/S0924-0136(02)00780-X CrossRefGoogle Scholar
  3. 3.
    Kawka M, Kakita T, Makinouchi A (1998) Simulation of multi-step sheet metal forming process by a static explicit FEM code. J Mater Process Technol 80–81:54–59. doi:10.1016/S0924-0136(98)00133-2 CrossRefGoogle Scholar
  4. 4.
    Yang DY, Ahn DG, Lee CH, Park CH, Kim TJ (2002) Integration of CAD/CAM/CAE/RP for the development of metal forming process. J Mater Process Technol 125–126:26–34. doi:10.1016/S0924-0136(02)00414-4 CrossRefGoogle Scholar
  5. 5.
    Dalloz A, Besson J, Gourgues-Lorenzon A-F, Sturel T, Pineau A (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76:1411–1424. doi:10.1016/j.engfracmech.2008.10.009 CrossRefGoogle Scholar
  6. 6.
    Gram MD, Wagoner RH (2011) Fineblanking of high strength steels: control of material properties for tool life. J Mater Process Technol 211:717–728. doi:10.1016/j.jmatprotec.2010.12.005 CrossRefGoogle Scholar
  7. 7.
    Husson C, Correia JPM, Daridon L, Ahzi S (2008) Finite elements simulations of thin copper sheets blanking: study of blanking parameters on sheared edge quality. J Mater Process Technol 199:74–83. doi:10.1016/j.jmatprotec.2007.08.034 CrossRefGoogle Scholar
  8. 8.
    Ghosh S, Li M, Khadke A (2005) 3D modeling of shear-slitting process for aluminum alloys. J Mater Process Technol 167:91–102. doi:10.1016/j.jmatprotec.2004.08.031 CrossRefGoogle Scholar
  9. 9.
    Li Y-M, Peng Y-H (2003) Fine-blanking process simulation by rigid viscous-plastic FEM coupled with void damage. Finite Elem Anal Des 39:457–472. doi:10.1016/S0168-874X(02)00103-8 CrossRefGoogle Scholar
  10. 10.
    Saanouni K, Belamri N, Autesserre P (2010) Finite element simulation of 3D sheet metal guillotining using advanced fully coupled elastoplastic-damage constitutive equations. Finite Elem Anal Des 46:535–550. doi:10.1016/j.finel.2010.02.002 CrossRefGoogle Scholar
  11. 11.
    Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep drawing process using solid finite elements. J Mater Process Technol 97:100–106. doi:10.1016/S0924-0136(99)00345-3 CrossRefGoogle Scholar
  12. 12.
    Oliveira MC, Alves JL, Menezes LF (2003) Improvement of a frictional contact algorithm for strongly curved contact problems. Int J Numer Meth Eng 58:2083–2101. doi:10.1002/nme.845 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Oliveira MC, Alves JL, Menezes LF (2003) One step springback strategies in sheet metal forming. In: Owen DRJ, Onate E, Suárez B (eds) Proceedings of the 7th International Conference on Computational Plasticity (Complas), Barcelona, p 87Google Scholar
  14. 14.
    Oliveira MC, Alves JL, Chaparro BM, Menezes LF (2007) Study on the influence of work-hardening modeling in springback prediction. Int J Plast 23:516–543. doi:10.1016/j.ijplas.2006.07.003 CrossRefMATHGoogle Scholar
  15. 15.
    Li KP, Carden WP, Wagoner RH (2002) Simulation of springback. Int J Mech Sci 44:103–122. doi:10.1016/S0020-7403(01)00083-2 CrossRefMATHGoogle Scholar
  16. 16.
    Coelho LC, Gattass M, Figueiredo LH (2000) Intersecting and trimming parametric meshes on finite element shells. Int J Numer Meth Eng 47:777–800. doi:10.1002/(SICI)1097-0207(20000210)47:4<777:AID-NME797>3.0.CO;2-6 CrossRefMATHGoogle Scholar
  17. 17.
    Dhondt G (2001) A new automatic hexahedral mesher based on cutting. Int J Numer Meth Eng 50:2109–2126. doi:10.1002/nme.114 CrossRefMATHGoogle Scholar
  18. 18.
    Laurent H, Grèze R, Oliveira MC, Menezes LF, Manach PY, Alves JL (2010) Numerical study of springback using the split-ring test for an AA5754 aluminum alloy. Finite Elem Anal Des 46:751–759. doi:10.1016/j.finel.2010.04.004 CrossRefGoogle Scholar
  19. 19.
    Laurent H, Coer J, Grèze R, Manach PY, Andrade-Campos A, Oliveira MC, Menezes LF (2011) Mechanical behaviour and springback study of an aluminium alloy in warm forming conditions. Int Sch Res Netw ISRN Mech Eng :9. doi:10.5402/2011/381615
  20. 20.
    Oliveira MC, Padmanabhan R, Baptista AJ, Alves JL, Menezes LF (2009) Sensitivity study on some parameters in blank design. Mater Des 30:1223–1230. doi:10.1016/j.matdes.2008.06.010 CrossRefGoogle Scholar
  21. 21.
    Padmanabhan R, Oliveira MC, Baptista AJ, Alves JL, Menezes LF (2009) Blank design for deep drawn parts using parametric NURBS surfaces. J Mater Process Technol 209:2402–2411. doi:10.1016/j.jmatprotec.2008.05.035 CrossRefGoogle Scholar
  22. 22.
    Livermore Software Technology Corporation (Lstc) (2013) LS-DYNA® keyword user’s manual, volume I, Version R7.0. http://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.0-vol-i
  23. 23.
    McMeeking RM, Rice JR (1975) Finite-element formulations for problems of large elastic-plastic deformation. Int J Solids Struct 11(5):601–616. doi:10.1016/0020-7683(75)90033-5 CrossRefMATHGoogle Scholar
  24. 24.
    Yamada Y, Yoshimura N (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10(5):343–354. doi:10.1016/0020-7403(68)90001-5 CrossRefMATHGoogle Scholar
  25. 25.
    International Center For Numerical Methods In Engineering (CIMNE) (2013) GID 11 Reference manual. http://www.gidhome.com/index.php?option=com_content&id=297. Accessed Jan 2013
  26. 26.
    Oliveira MC, Alves JL, Menezes LF (2002) Springback evaluation using 3D finite elements. In: Yang DY, Oh SI, Huh H, Kim YH (eds) Proceedings of the 5th International Conference and workshop on numerical simulation of 3d sheet forming processes (NUMISHEET’2002)—verification of simulation with experiment, vol 1, pp 189–194Google Scholar
  27. 27.
    Padmanabhan R, Oliveira MC, Baptista AJ, Alves JL, Menezes LF (2007) Study on the influence of the refinement of a 3-D finite element mesh in springback evaluation of plane-strain channel sections. In: César de Sá JMA, Santos AD (eds) Proceedings of the 9th International Conference in numerical methods in industrial forming processes (NUMIFORM’07), American Institute of Physics Conference, vol 908, pp 847 852. doi:10.1063/1.2740916
  28. 28.
    Teodosiu C (1989) The plastic spin: microstructural origin and computational significance. In: Owen DRJ, Hinton E, Onate E (eds) Proceedings of the 2nd Int. Conf. on Computational Plasticity, Barcelona, p 163Google Scholar
  29. 29.
    Alves JL, Oliveira MC, Menezes LF (2004) An advanced constitutive model in sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion. In: Glosh S, Castro JC, Lee JK (eds) Proceedings of the Numiform’04 on materials processing and design: modelling, simulation and applications. Amer Inst Physics, Melville, p 1645Google Scholar
  30. 30.
    Bouvier S, Alves JL, Oliveira MC, Menezes LF (2005) Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain path changes. Comput Mater Sci 32(3–4):301–315CrossRefGoogle Scholar
  31. 31.
    Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear. Int J Numer Meth Eng 15:1413–1418CrossRefMATHGoogle Scholar
  32. 32.
    Menezes LF, Teodosiu C, Makinouchi A (1991) 3-D solid elasto-plastic elements for simulating sheet metal forming processes by the finite element method. In: Berichte VDI (ed) Proceedings FE-simulation of 3-D sheet metal forming processes in automotive industry. VDI VERLAG, Dusseldorf, pp 381–403Google Scholar
  33. 33.
    Alves JL, Menezes LF (2001) Application of tri-linear and tri-quadratic 3-D solid finite elements in sheet metal forming simulations. In: Mori K-I (ed) Proceedings of the Numiform’01 on Simulation of materials processing: theory, methods and applications. Balkema, Rotterdam, pp 639–644Google Scholar
  34. 34.
    Baptista AJ, Alves JL, Oliveira MC, Rodrigues DM, Menezes LF (2005) Application of the incremental volumetric remapping method in the simulation of multi-step deep drawing processes. In: Smith LM, Zhang L, Wang C-T, Shi MF, Yoon J-W, Stoughton TB, Cao J, Pourboghrat F (eds) Proceedings of the 6th International Conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET). Melville, New York, p 173Google Scholar
  35. 35.
    Demeri MY, Lou M, Saran MJ (2000) A benchmark test for springback simulation in sheet metal forming. Soc Automot Eng 01:2657. doi:10.4271/2000-01-2657 Google Scholar
  36. 36.
    Li S, Hoferlin E, Van Bael A, Van Houtte P, Teodosiu C (2003) Finite element modelling of plastic anisotropy induced by texture and strain-path change. Int J Plast 19:647–674. doi:10.1016/S0749-6419(01)00079-1 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • P. D. Barros
    • 1
  • A. J. Baptista
    • 2
  • J. L. Alves
    • 3
  • M. C. Oliveira
    • 1
  • D. M. Rodrigues
    • 1
  • L. F. Menezes
    • 1
  1. 1.Department of Mechanical Engineering, CEMUCUniversity of CoimbraCoimbraPortugal
  2. 2.INEGI, Institute of Mechanical Engineering and Industrial ManagementFEUP CampusPortoPortugal
  3. 3.Department of Mechanical EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations