Engineering with Computers

, Volume 30, Issue 4, pp 457–473 | Cite as

A new method for T-spline parameterization of complex 2D geometries

  • M. Brovka
  • J. I. López
  • J. M. Escobar
  • J. M. Cascón
  • R. Montenegro
Original Article

Abstract

We present a new strategy, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain to preserve the features of the object boundary with a desired tolerance. The key of the method lies in defining an isomorphic transformation between the parametric and physical T-mesh finding the optimal position of the interior nodes by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by imposing the interpolation conditions on points sited both in the interior and on the boundary of the geometry. The efficacy of the proposed technique is shown in several examples. Also we present some results of the application of isogeometric analysis in a geometry parameterized with this technique.

Keywords

T-spline parameterization Simultaneous T-mesh untangling and smoothing Meccano method Isogeometric analysis Quadtree 

References

  1. 1.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2008) Isogeometric analysis: toward unification of computer aided design and finite element analysis. In: Trends in engineering computational technology. Saxe-Coburg Publications, Stirling, pp 1–16Google Scholar
  2. 2.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bornemann PB, Cirak F (2013) A subdivision-based implementation of the hierarchical B-spline finite element method. Comput Methods Appl Mech Eng 253:584–598MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2007) A new meccano technique for adaptive 3-D triangulation. In: Proceedings of the 16th international meshing roundtable. Springer, Berlin, pp 103–120Google Scholar
  5. 5.
    Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2009) The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. In: Proceedings of the 18th international meshing roundtable. Springer, Berlin, pp 463–480Google Scholar
  6. 6.
    Coons SA (1964) Surfaces for computer aided design. Springfield, Western New EnglandGoogle Scholar
  7. 7.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, ChichesterCrossRefGoogle Scholar
  8. 8.
    Dennis J, Schnabel R (1983) Numerical Methods for unconstrained optimization and nonlinear equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Englewood Cliffs http://books.google.es/books?id=RtxcWd0eBD0C
  9. 9.
    Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192:2775–2787CrossRefMATHGoogle Scholar
  10. 10.
    Escobar JM, Montenegro R, Montero G, Rodríguez E, González-Yuste JM (2005) Smoothing and local refinement techniques for improving tetrahedral mesh quality. Comput Struct 83:2423–2430CrossRefGoogle Scholar
  11. 11.
    Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2010) SUS Code: Simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/proyecto2012-2014/html/Software.html
  12. 12.
    Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011a) A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput Methods Appl Mech Eng 200:3210–3222CrossRefMATHGoogle Scholar
  13. 13.
    Escobar JM, Montenegro R, Rodríguez E, Montero G (2011b) Simultaneous aligning and smoothing of surface triangulations. Eng Comput 27:17–29CrossRefGoogle Scholar
  14. 14.
    Escobar JM, Montenegro R, Rodríguez E, Cascón JM (2012) The meccano method for isogeometric solid modeling and applications. In: Engineering with computers, pp 1–13. doi:10.1007/s00366-012-0300-z
  15. 15.
    Farin G, Hansford D (1999) Discrete Coons patches. Comput Aid Geom Design 16:691–700MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Num Methods Eng 53:1377–1391MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Num Methods Eng 49:109–125CrossRefMATHGoogle Scholar
  18. 18.
    Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Knupp PM (2003) A method for hexahedral mesh shape optimization. Int J Num Methods Eng 58(2):319–332CrossRefMATHGoogle Scholar
  20. 20.
    Li B, Li X, Wang K (2010) Generalized polycube trivariate splines. In: SMI 2010, international conference of shape modeling and applications, pp 261–265Google Scholar
  21. 21.
    Li X, Guo X, Wang H, He Y, Gu X, Qin H (2007) Harmonic volumetric mapping for solid modeling applications. In: Proceedings of ACM solid and physical modeling symposium. Association for Computing Machinery, Inc., Pennsylvania, pp 109–120Google Scholar
  22. 22.
    Martin T, Cohen E, Kirby R (2009) Volumetric parameterization and trivariate b-spline fitting using harmonic functions. Comput Aid Geom Design 26:648–664MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Appl Numer Math 59:2203–2217MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic three-dimensional triangulation and volume parametrization of complex solids. In: Developments and applications in engineering computational technology, Saxe-Coburg Publications, Stirling, pp 19–48Google Scholar
  25. 25.
    Piegl L, Tiller W (1997) The NURBS book. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann Publishers, BurlingtonMATHGoogle Scholar
  27. 27.
    Schillinger D, Debé L, Scott M, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of nurbs, immersed boundary methods, and T-spline cad surfaces. Comput Methods Appl Mech EngGoogle Scholar
  28. 28.
    Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213-216:206–222MathSciNetCrossRefGoogle Scholar
  29. 29.
    Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement technique. Wiley-Teubner, ChichesterGoogle Scholar
  30. 30.
    Vuong AV, Giannelli C, Juttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200:3554–3567MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Wang W, Zhang Y, Liu L, Hughes TJR (2013) Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology. Comput Aid Des 45:351–360MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xu G, Mourrain B, Duvigneau R, Galligo A (2011a) Parametrization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200:2021–2031MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Xu G, Mourrain B, Duvigneau R, Galligo A (2011b) Variational harmonic method for parameterization of computational domain in 2D isogeometric analysis. In: 12th International conference on computer-aided design and computer graphics. IEEE, Jinan, pp 223–228Google Scholar
  34. 34.
    Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249–252:185–197MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • M. Brovka
    • 1
  • J. I. López
    • 1
  • J. M. Escobar
    • 1
  • J. M. Cascón
    • 2
  • R. Montenegro
    • 1
  1. 1.University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI)University of Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Department of Economics and History of EconomicsUniversity of SalamancaSalamancaSpain

Personalised recommendations