Advertisement

Engineering with Computers

, Volume 30, Issue 4, pp 689–701 | Cite as

Automatic dimensional reduction and meshing of stiffened thin-wall structures

  • Declan C. Nolan
  • Chris M. Tierney
  • Cecil G. Armstrong
  • Trevor T. RobinsonEmail author
  • Jonathan E. Makem
Original Article

Abstract

The creation of idealised, dimensionally reduced meshes for preliminary design and optimisation remains a time-consuming, manual task. A dimensionally reduced model is ideal for assessing design changes through modification of element properties without the need to create a new geometry or mesh. In this paper, a novel approach for automating the creation of mixed dimensional meshes is presented. The input to the process is a solid model which has been decomposed into a non-manifold assembly of smaller volumes with different meshing significance. Associativity between the original solid model and the dimensionally reduced equivalent is maintained. The approach is validated by means of a free-free modal analysis on an output mesh of a gas turbine engine component of industrial complexity. Extensions and enhancements to this work are also discussed.

Keywords

Dimensional reduction Idealisation Meshing CAD CAE CAD–CAE integration Mixed dimensional modelling 

Notes

Acknowledgments

The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 234344 (http://www.crescendo-fp7.eu). The authors would like to thank the various partners for their support throughout the course of the work.

References

  1. 1.
    Arabshahi S, Barton DC, Shaw NK (1993) Steps towards cad–fea integration. Eng Comput 9(1):17–26CrossRefGoogle Scholar
  2. 2.
    Hamri O, Léon J-C, Giannini F, Falcidieno B (2010) Software environment for cad/cae integration. Adv Eng Softw 41(10–11):1211–1222CrossRefzbMATHGoogle Scholar
  3. 3.
    Gujarathi GP, Ma Y-S (2011) Parametric cad/cae integration using a common data model. J Manuf Syst 30(3):118–132CrossRefGoogle Scholar
  4. 4.
    SIEMENS. Siemens plm software, July (2012). http://www.plm.automation.siemens.com/
  5. 5.
    Quadros WR, Owen SJ (2012) Defeaturing cad models using a geometry-based size field and facet-based reduction operators. Eng Comput 28(3):211–224CrossRefGoogle Scholar
  6. 6.
    Sheffer A (2001) Model simplification for meshing using face clustering. CAD Comput Aided Des 33(13):925–934CrossRefGoogle Scholar
  7. 7.
    Lee KY, Armstrong CG, Price MA, Lamont JH (2005) A small feature suppression/unsuppression system for preparing b-rep models for analysis. In: ACM symposium on solid modeling and applications, SM, pp 113–124Google Scholar
  8. 8.
    Li B, Liu J (2002) Detail feature recognition and decomposition in solid model. CAD Comput Aided Des 34(5):405–414CrossRefGoogle Scholar
  9. 9.
    Thakur A, Banerjee AG, Gupta SK (2009) A survey of cad model simplification techniques for physics-based simulation applications. CAD Comput Aided Des 41(2):65–80CrossRefGoogle Scholar
  10. 10.
    Samad WA, Suresh K (2011) Cad-integrated analysis of 3-d beams: a surface-integration approach. Eng Comput 27(3):201–210CrossRefGoogle Scholar
  11. 11.
    Sheen DP, Son T, Myung D, Ryu C, Lee SH, Lee K, Yeo TJ (2010) Transformation of a thin-walled solid model into a surface model via solid deflation. Comput Aided Des 42(8):720–730CrossRefGoogle Scholar
  12. 12.
    Chong CS, Senthil Kumar A, Lee KH (2004) Automatic solid decomposition and reduction for non-manifold geometric model generation. Comput Aided Des 36(13):1357–1369CrossRefGoogle Scholar
  13. 13.
    Donaghy RJ, Armstrong CG, Price MA (2000) Dimensional reduction of surface models for analysis. Eng Comput 16(1):24–35CrossRefGoogle Scholar
  14. 14.
    Blum H (1967) A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form. MIT Press, Cambridge, pp 362–380Google Scholar
  15. 15.
    McCune RW, Armstrong CG, Robinson DJ (2000) Mixed-dimensional coupling in finite element models. Int J Numer Methods Eng 49(6):725–750CrossRefzbMATHGoogle Scholar
  16. 16.
    Makem JE, Armstrong CG, Robinson TT (2012) Automatic decomposition and efficient semi-structured meshing of complex solids. Eng Comput. doi: 10.1007/s00366-012-0302-x
  17. 17.
    Robinson TT, Armstrong CG, Fairey R (2011) Automated mixed dimensional modelling from 2d and 3d cad models. Finite Elem Anal Des 47(2):151–165CrossRefGoogle Scholar
  18. 18.
    CADfix. TranscenData, October (2012). http://www.transcendata.com/products/cadfix/
  19. 19.
    Lee SH, Lee K (2001) Partial entity structure: a compact non-manifold boundary representation based on partial topological entities, In: Proceedings of the sixth ACM symposium on Solid modeling and applications, pp 159–170Google Scholar
  20. 20.
    Luo X-J, Shephard MS, Yin L-Z, O’Bara RM, Nastasi R, Beall MW (2010) Construction of near optimal meshes for 3d curved domains with thin sections and singularities for p-version method. Eng Comput 26(3):215–229CrossRefGoogle Scholar
  21. 21.
    Sheffer A, Bercovier M, Blacker T, Clements J (2000) Virtual topology operators for meshing. Int J Comput Geom Appl (Singapore) 10(3):309–331CrossRefzbMATHGoogle Scholar
  22. 22.
    Quadros WR , Shimada K, Owen SJ (2004) Skeleton-based computational method for the generation of a 3d finite element mesh sizing function. Eng Comput 20(3):249–264CrossRefGoogle Scholar
  23. 23.
    Quadros WR, Vyas V, Brewer M, Owen SJ, Shimada K (2010) A computational framework for automating generation of sizing function in assembly meshing via disconnected skeletons. Eng Comput 26(3):231–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Declan C. Nolan
    • 1
  • Chris M. Tierney
    • 1
  • Cecil G. Armstrong
    • 1
  • Trevor T. Robinson
    • 1
    Email author
  • Jonathan E. Makem
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastUK

Personalised recommendations