Engineering with Computers

, Volume 30, Issue 3, pp 331–343 | Cite as

The meccano method for isogeometric solid modeling and applications

  • J. M. Escobar
  • R. Montenegro
  • E. Rodríguez
  • J. M. Cascón
Original Article

Abstract

We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid. The distribution of the interpolating points is adapted to the singularities of the domain to preserve the features of the surface triangulation. We present some results of the application of isogeometric analysis with T-splines to the resolution of Poisson equation in solids parameterized with this technique.

Keywords

Trivariate T-spline Isogeometric analysis Volumetric parameterization Mesh optimization Meccano method 

References

  1. 1.
    Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programing: theory and algorithms. Wiley, New YorkMATHGoogle Scholar
  2. 2.
    Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2008) Isogeometric analysis: toward unification of computer aided design and finite element analysis. In: Trends in Engineering Computational Technology. Saxe-Coburg Publications, Stirling, pp 1–16Google Scholar
  4. 4.
    Borouchaki H, Frey PJ (2005) Simplification of surface mesh using Hausdorff envelope. Comput Methods Appl Mech Eng 194:4864–4884CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Buffa A, Cho D, Sangalli G (2010) Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput Methods Appl Mech Eng 199:1437–1445CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Carey GF, Oden JT (1982) Finite elements, a second course. Prentice-Hall, New JerseyGoogle Scholar
  7. 7.
    Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2007) A new meccano technique for adaptive 3-D triangulations. In: Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, pp 103–120Google Scholar
  8. 8.
    Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2009) The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. In: Proceedings of 18th International Meshing Roundtable. Springer, Berlin, pp 463–480Google Scholar
  9. 9.
    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, ChichesterCrossRefGoogle Scholar
  11. 11.
    Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192:2775–2787CrossRefMATHGoogle Scholar
  12. 12.
    Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2010) SUS Code—simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/proyecto2012-2014
  13. 13.
    Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput Methods Appl Mech Eng 200:3210–3222CrossRefMATHGoogle Scholar
  14. 14.
    Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) The meccano method for isogeometric solid modeling. In: Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, pp 551–568Google Scholar
  15. 15.
    Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14:231–250CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modeling, Mathematics and Visualization. Springer, Berlin, pp 157–186Google Scholar
  18. 18.
    Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 courses. ACM Press, New YorkGoogle Scholar
  19. 19.
    Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kossaczky I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55:275–288CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Li X, Guo X, Wang H, He Y, Gu X, Qin H (2007) Harmonic volumetric mapping for solid modeling applications. In: Proceedings of ACM solid and physical modeling symposium. Association for Computing Machinery, Inc., New York, 109–120Google Scholar
  22. 22.
    Li B, Li X, Wang K (2010) Generalized PolyCube trivariate splines. In: SMI 2010—International conference of shape modeling and applications, pp 261–265Google Scholar
  23. 23.
    Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29:63–76CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Lin J, Jin X, Fan Z, Wang CCL (2008) Automatic PolyCube-Maps. Lect Notes Comput Sci 4975:3–16CrossRefGoogle Scholar
  25. 25.
    Martin T, Cohen E, Kirby RM (2009) Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput Aided Geom Des 26:648–664CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Martin T, Cohen E (2010) Volumetric parameterization of complex objects by respecting multiple materials. Comput Graph 34:187–197CrossRefGoogle Scholar
  27. 27.
    Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Appl Numer Math 59:2203–2217CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic 3-D triangulation and volume parametrization of complex solids. Comput Sci Eng Technol Ser 26:19–48CrossRefGoogle Scholar
  29. 29.
    Piegl L, Tiller W (1997) The NURBS book. Springer, New YorkCrossRefGoogle Scholar
  30. 30.
    Scott MA, Borden M, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213-216:206–222CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22:477–484CrossRefGoogle Scholar
  33. 33.
    Song W, Yang X (2005) Free-form deformation with weighted T-spline. Vis Comput 21:139–155CrossRefMathSciNetGoogle Scholar
  34. 34.
    Tarini M, Hormann K, Cignoni P, Montani C (2004) Polycube-maps. ACM Trans Graph 23:853–860CrossRefGoogle Scholar
  35. 35.
    Verfürth R (1996) A review of a posteriori error estimation and adaptiveMesh-refinement technique. Wiley-Teubner, ChichesterGoogle Scholar
  36. 36.
    Wang H, He Y, Li X, Gu X, Qin H (2008) Polycube splines. Comput Aided Geom Des 40:721–733CrossRefMATHGoogle Scholar
  37. 37.
    Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Optimal analysis-aware parameterization of computational domain in isogeometric analysis. Lect Notes Comput Sci 6130:236–254CrossRefGoogle Scholar
  38. 38.
    Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Parametrization of computational domain in isogeometric analysis: methods and comparison. INRIA-00530758, pp 1–29Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • J. M. Escobar
    • 1
  • R. Montenegro
    • 1
  • E. Rodríguez
    • 1
  • J. M. Cascón
    • 2
  1. 1.University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI)University of Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Department of Economics and Economic History, Faculty of SciencesUniversity of SalamancaSalamancaSpain

Personalised recommendations