Advertisement

Engineering with Computers

, Volume 29, Issue 3, pp 345–358 | Cite as

A comparison of simplex and simulated annealing for optimization of a new rear underrun protective device

  • Tommaso IngrassiaEmail author
  • Vincenzo Nigrelli
  • Rosario Buttitta
Original Article

Abstract

In this paper, two optimization approaches to improve the product design process have been analysed. Through the analysis of a case study, concerning the designing of a new High Energy Absorption Rear Underrun Protective Device (HEARUPD), two different optimization approaches (simplex and simulated annealing) have been compared. In the implemented optimization processes, the crash between an economy car and the rear part of a truck has been simulated by dynamic numerical (FEM) analyses. Moreover, authors have proposed the use of a suitable linear function of four variables with the purpose of reducing the multi-objective optimization processes to mono-objective ones. That has been made to simplify the analysis procedures without affecting the quality and the completeness of the optimization processes. The obtained results, as well as showing the high effectiveness of the integrated use of numerical crash analyses and optimization methods, demonstrate that simplex method is more effective than simulated annealing one for optimization problems where the single analysis loop requires much time. Even if the solutions are quite similar in terms of calculated values of the objective function, design and state variables, simplex method needs shorter computational time than simulated annealing to obtain an optimized solution.

Keywords

Optimization Simulated annealing Simplex Numerical crash analysis 

References

  1. 1.
    Cappello F, Ingrassia T, Mancuso A, Nigrelli V (2005) Methodical redesign of a semitrailer. In: Hernandez S, Brebbia CA (eds) Computer aided optimum design in engineering IX. WIT Press, UK. ISBN: 1-84564-016-0, ISSN: 1746–4498Google Scholar
  2. 2.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  3. 3.
    Vanderplats GN (1984) Numerical optimisation techniques for engineering design. McGraw-Hill, MontereyGoogle Scholar
  4. 4.
    Pantelides CP, Tzan SR (2000) Modified iterated simulated annealing algorithm for structural synthesis. Adv Eng Softw 31:391–400CrossRefGoogle Scholar
  5. 5.
    Leite JPB, Topping BHV (2000) Improved genetic operators for structural engineering optimization. Adv Eng Softw 29(7):529–562zbMATHGoogle Scholar
  6. 6.
    Raich AM, Ghaboussi J (2000) Evolving structural design solutions using an implicit redundant genetic algorithm. Struct Multidiscip Optim 20:222–231CrossRefGoogle Scholar
  7. 7.
    Durand MD, White SR (2000) Trading accuracy for speed in parallel simulated annealing with simultaneous moves. Parallel Comput 26:135–150MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Park HS, Sung CW (2002) Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Comput Struct 80:1305–1316CrossRefGoogle Scholar
  9. 9.
    Cantu-Paz E, Goldberg DE (2000) Efficient parallel genetic algorithms: theory and practice. Comput Methods Appl Mech Eng 186:221–238MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in FORTRAN. The art of scientific computing. Cambridge University Press, CambridgezbMATHGoogle Scholar
  11. 11.
    Conn AR, Scheinberg K, Vicente LN (2003) Geometry of sample sets in derivative free optimization. Part I: polynomial interpolation. http://www.mat.uc.pt/lnv/papers/reports.html
  12. 12.
    Luenberger DG (1984) Linear and nonlinear programming. 2nd edn., Addison-Wesley, Reading, ISBN: 1-4020-7593-6Google Scholar
  13. 13.
    Holland J (1975) Adaptation in natural and artificial systems. Michigan University Press, Ann arborGoogle Scholar
  14. 14.
    Cappello F, Mancuso A (2003) A genetic algorithm for combined topology and shape optimisations. Comput Aided Des 35(8):761–769CrossRefGoogle Scholar
  15. 15.
    Zhang ZQ, Zhou JX, Zhou N, Wang XM, Zhang L (2005) Shape optimization using kernel particle method and an enriched genetic algorithm. Comput Methods Appl Mech Eng 194:4048–4070MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nabli H (2009) An overview on the simplex algorithm. Appl Math Comput 210:479–489MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Benhamadou M (2002) On the simplex algorithm ‘revised form’. Adv Eng Softw 33:769–777zbMATHCrossRefGoogle Scholar
  18. 18.
    Zain AM, Haron H, Sharif S (2010) Genetic algorithm and simulated annealing to estimate optimal process parameters of the abrasive waterjet machining. Engineering with Computers. doi  10.1007/s00366-010-0195-5
  19. 19.
    Dantzig GB (1963) Linear programming and extensions. Princeton University Press, PrincetonzbMATHGoogle Scholar
  20. 20.
    Koshel RJ (2002) Enhancement of the downhill simplex method of optimization. In: Paper presented at international optical design conference, Arizona, 3 June 2002Google Scholar
  21. 21.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313zbMATHCrossRefGoogle Scholar
  22. 22.
    Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  23. 23.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953zbMATHCrossRefGoogle Scholar
  25. 25.
    Behzadi B, Ghotbi C, Galindo A (2005) Application of the simplex simulated annealing technique to nonlinear parameter optimization for the SAFT-VR equation of state. Chem Eng Sci 60:6607–6621CrossRefGoogle Scholar
  26. 26.
    Mahmoud H, Alrefaei A, Diabat H (2009) A simulated annealing technique for multi-objective simulation optimization. Appl Math Comput 215:3029–3035MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Aarts E, Korst J (1990) Simulated annealing and Boltzmann machines. Wiley, ChichesterGoogle Scholar
  28. 28.
    Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35(12):1693–1701CrossRefGoogle Scholar
  29. 29.
    Cardoso MF, Salcedo RL, Azevedo SF (1996) The simplex simulated annealing approach to continuous nonlinear optimization. Comput Chem Eng 20:1065–1080CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Hughes T (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall Inc, Englewood CliffszbMATHGoogle Scholar
  33. 33.
    Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85:67–94Google Scholar
  34. 34.
    Levy H, Lessman F (1992) Finite difference equations. Dover, Mineola. ISBN: 0-486-67260-3Google Scholar
  35. 35.
    Langwieder K, Gwehenberger J, Kandler M (2001) Rear underrun protection system in commercial vehicles. ATZ Automobiltechnische Zeitschrift worldwide eMagazines (edn 05). http://www.atzonline.com/index.php;do=show/site=a4e/sid=3208789504ff19ce5e50d5070013017/alloc=3/id=1481
  36. 36.
    Ingrassia T, Nigrelli V (2010) Design optimization and analysis of a new rear underrun protective device for truck. In: Proceedings of the 8th international symposium on tools and methods of competitive engineering (TMCE), Ancona, 12–16 Apr 2010Google Scholar
  37. 37.
  38. 38.
    Cardoso M, Salcedo R, Fevo De Azeveoo S (1996) The simplex-simulated annealing approach to continuous non-linear optimization. Comput Chem Eng 2(9):1065–1080CrossRefGoogle Scholar
  39. 39.
    Hedar A, Fukushima M (2002) Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization. Optim Methods Softw 17(5):891–912MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Tommaso Ingrassia
    • 1
    Email author
  • Vincenzo Nigrelli
    • 1
  • Rosario Buttitta
    • 1
  1. 1.Dipartimento di Ingegneria Chimica, Gestionale, Informatica, MeccanicaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations