Engineering with Computers

, Volume 26, Issue 4, pp 407–418 | Cite as

Two-dimensional Delaunay-based anisotropic mesh adaptation

  • Doug Pagnutti
  • Carl Ollivier-GoochEmail author
Original Article


Science and engineering applications often have anisotropic physics and therefore require anisotropic mesh adaptation. In common with previous researchers on this topic, we use metrics to specify the desired mesh. Where previous approaches are typically heuristic and sometimes require expensive optimization steps, our approach is an extension of isotropic Delaunay meshing methods and requires only occasional, relatively inexpensive optimization operations. We use a discrete metric formulation, with the metric defined at vertices. To map a local sub-mesh to the metric space, we compute metric lengths for edges, and use those lengths to construct a triangulation in the metric space. Based on the metric edge lengths, we define a quality measure in the metric space similar to the well-known shortest-edge to circumradius ratio for isotropic meshes. We extend the common mesh swapping, Delaunay insertion, and vertex removal primitives for use in the metric space. We give examples demonstrating our scheme’s ability to produce a mesh consistent with a discontinuous, anisotropic mesh metric and the use of our scheme in solution adaptive refinement.


Mesh adaptation Anisotropic meshing Delaunay meshing Metric-based adaptation 



This work has been funded by the Canadian Natural Sciences and Engineering Research Council under Special Research Opportunities Grant SRO-299160.


  1. 1.
    Ait-Ali-Yahia D, Baruzzi G, Habashi WG, Fortin M, Dompierre J, Vallet MG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II: structured grids. Int J Numer Methods Fluids 39(8):657–673zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balasubramanian R, Newman JC III (2007) Comparison of adjoint-based and feature-based grid adaptation for functional outputs. Int J Numer Methods Fluids 53:1541–1569zbMATHCrossRefGoogle Scholar
  3. 3.
    Boivin C, Ollivier-Gooch CF (2002) Guaranteed-quality triangular mesh generation for domains with curved boundaries. Int J Numer Methods Eng 55(10):1185–1213zbMATHCrossRefGoogle Scholar
  4. 4.
    Buscaglia GC, Dari EA (1997) Anisotropic mesh optimization and its application in adaptivity. Int J Numer Methods Eng 40:4119–4136zbMATHCrossRefGoogle Scholar
  5. 5.
    Chew LP (1989) Guaranteed-quality triangular meshes. Technical Report TR-89-983, Department of Computer Science, Cornell UniversityGoogle Scholar
  6. 6.
    Dompierre J, Vallet MG, Bourgault Y, Fortin M, Habashi WG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III. Unstructured meshes. Int J Numer Methods Fluids 39(8):675–702zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freitag LA, Ollivier-Gooch CF (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40(21):3979–4002zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Habashi WG, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet MG (2000) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles. Int J Numer Methods Fluids 32(6):725–744zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson RA (1929) Modern geometry: an elementary treatise on the geometry of the triangle and the circle. Houghton Mifflin, BostonzbMATHGoogle Scholar
  10. 10.
    Labelle F, Shewchuk JR (2003) Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the nineteenth annual symposium on computational geometry. Association for Computing Machinery, pp 191–200Google Scholar
  11. 11.
    Landsberg AM (1990) Adaptation for vortex flows using a 3-d finite element solver. Master’s thesis, Massachusetts Institute of TechnologyGoogle Scholar
  12. 12.
    Lee MC, Joun MS, Lee JK (2007) Adaptive tetrahedral element generation and refinement to improve the quality of bulk metal forming simulation. Finite Elem Anal Des 10:788–802CrossRefGoogle Scholar
  13. 13.
    Li X, Shephard M, Beall M (2005) 3-D anisotropic mesh adaptation by mesh modifications. Comput Methods Appl Mech Eng 194(48–49):4915–4950zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Marcum DL, Gaither KP (1997) Solution adaptive unstructured grid generation using pseudo-pattern recognition techniques. In: Proceedings of the 13th AIAA CFD conference, AIAA 97-1860Google Scholar
  15. 15.
    Mavriplis D, Jameson A (1987) Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes. AIAA paper 87-0353Google Scholar
  16. 16.
    Michalak C, Ollivier-Gooch C (2007) Matrix-explicit GMRES for a higher-order accurate inviscid compressible flow solver. In: Proceedings of the 18th AIAA CFD conferenceGoogle Scholar
  17. 17.
    Miller GL, Talmor D, Teng S-H (1999) Optimal coarsening of unstructured meshes. J Algorithm 31(1):29–65zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Modiano DL, Murman EM (1994) Adaptive computations of flow around a delta-wing with vortex breakdown. AIAA J 32(7):1545–1547CrossRefGoogle Scholar
  19. 19.
    Nejat A, Ollivier-Gooch C (2008) A high-order accurate unstructured finite volume Newton–Krylov algorithm for inviscid compressible flows. J Comput Phys 227(4):2592–2609Google Scholar
  20. 20.
    Nemec M, Aftosmis MJ (2007) Adjoint error estimation and adaptive refinement for embedded-boundary cartesian meshes. In: Proceedings of the 18th AIAA CFD conferenceGoogle Scholar
  21. 21.
    Ollivier-Gooch CF (1998) An unstructured mesh improvement toolkit with application to mesh improvement, generation and (de-)refinement. AIAA 98-0218Google Scholar
  22. 22.
    Ollivier-Gooch CF (1998–2009) GRUMMP—generation and refinement of unstructured, mixed-element meshes in parallel.
  23. 23.
    Ollivier-Gooch CF (2003) Coarsening unstructured meshes by edge contraction. Int J Numer Methods Eng 57(3):391–414zbMATHCrossRefGoogle Scholar
  24. 24.
    Ollivier-Gooch CF, Van Altena M (2002) A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J Comput Phys 181(2):729–752zbMATHCrossRefGoogle Scholar
  25. 25.
    Pagnutti D, Ollivier-Gooch C (2009) A generalized framework for high order anisotropic mesh adaptation. Comput Struct (to appear)Google Scholar
  26. 26.
    Pulliam TH (1985) Efficient solution methods for the Navier–Stokes equations. In: Numerical techniques for viscous flow computation in turbomachinery bladings, von Kármán Institute for fluid dynamics lecture series. von Kármán Institute, Rhode-St.-Genese, BelgiumGoogle Scholar
  27. 27.
    Radespiel R (1989) A cell-vertex multigrid method for the Navier–Stokes equations. NASA TM-101557Google Scholar
  28. 28.
    Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shewchuk JR (1997) Delaunay refinement mesh generation. PhD thesis, School of Computer Science, Carnegie Mellon UniversityGoogle Scholar
  30. 30.
    Venditti DA, Darmofal DL (2000) Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. J Comput Phys 164(1):204–227zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Venditti DA, Darmofal DL (2002) Grid adaptation for functional outputs: application to two-dimensional inviscid flows. J Comput Phys 175(1):40–69CrossRefMathSciNetGoogle Scholar
  32. 32.
    Venditti DA, Darmofal DL (2003) Grid adaptation for functional outputs: application to two-dimensional viscous flows. J Comput Phys 187:22–46zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Advanced Numerical Simulation Laboratory, Department of Mechanical EngineeringThe University of British ColumbiaVancouverCananda

Personalised recommendations