Surface mesh regeneration considering curvatures

  • A. C. O. Miranda
  • L. F. Martha
  • P. A. Wawrzynek
  • A. R. Ingraffea
ORIGINAL ARTICLE

Abstract

This work describes an automatic algorithm for unstructured mesh regeneration on arbitrarily shaped three-dimensional surfaces. The arbitrary surface may be: a triangulated mesh, a set of points, or an analytical surface (such as a collection of NURBS patches). To be generic, the algorithm works directly in Cartesian coordinates, as opposed to generating the mesh in parametric space, which might not be available in all the cases. In addition, the algorithm requires the implementation of three generic functions that abstractly represent the supporting surface. The first, given a point location, returns the desired characteristic size of a triangular element at this position. The second method, given the current edge in the boundary-contraction algorithm, locates the ideal apex point that forms a triangle with this edge. And the third method, given a point in space and a projection direction, returns the closest point on the geometrical supporting surface. This work also describes the implementation of these three methods to re-mesh an existing triangulated mesh that might present regions of high curvature. In this implementation, the only information about the surface geometry is a set of triangles. In order to test the efficiency of the proposed algorithm of surface mesh generation and implementation of the three abstract methods, results of performance and quality of generated triangular element examples are presented.

Keywords

Mesh generation Curvature surfaces Background octree Advancing-front technique 

References

  1. 1.
    Cavalcante Neto JB, Wawrzynek PA, Carvalho MTM, Martha LF, Ingraffea AR (2001) An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. Eng Comput 17(1):75–91MATHCrossRefGoogle Scholar
  2. 2.
    Miranda ACO, Martha LF (2002) Mesh generation on high curvature surfaces based on background Quadtree structure. In: Proceedings of 11th International Meshing Roundtable 1, pp 333–341Google Scholar
  3. 3.
    Miranda ACO, Cavalcante Neto JB, Martha LF (1999) An algorithm for two-dimensional mesh generation for arbitrary regions with cracks, SIBGRAPI’99. In: Stolfi J, Tozzi C (eds) XII Brazilian Symposium on Computer Graphics, Image Processing and Vision, IEEE Computer Society Order Number PRO0481, ISBN 0-7695-0481-7, pp 29–38Google Scholar
  4. 4.
    Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF, Bittencourt TN (2003) Fatigue life and crack path predictions in generic 2D structural components. Eng Fract Mech 70(10):1259–1279CrossRefGoogle Scholar
  5. 5.
    Carlos J, Scheidegger E, Fleishman S, Silva CT (1996) Direct (re)meshing for efficient surface processing. Comput Graph Forum 25(3):527–536Google Scholar
  6. 6.
    Lohner R (1996) Regridding surface triangulations. J Comput Phys 126(1):1–10CrossRefGoogle Scholar
  7. 7.
    Shostko AA, Lohner R, Sandberg WC (1999) Surface triangulation over intersecting geometries. Int J Numer Meth Eng 44:1359–1376MATHCrossRefGoogle Scholar
  8. 8.
    Nakahashi K, Sharov D (1995) Direct surface triangulation using the advancing front method. AIAA, pp 442–451Google Scholar
  9. 9.
    Lau TS, Lo SH (1996) Finite element mesh generation over analytical curved surfaces. Comput Struct 59(2):301–309MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lo SH, Lau TS (1998) Mesh generation over curved surfaces with explicit control on discretization error. Eng Comput Int J Comput Eng 15(3):357–373MATHGoogle Scholar
  11. 11.
    Chan CT, Anastasiou K (1997) An automatic tetrahedral mesh generation scheme by the advancing front method. Commun Numer Methods Eng 13:33–46MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jin H, Tanner RI (1993) Generation of unstructured tetrahedral meshes by advancing front technique. Int J Numer Methods Eng 36:1805–1823MATHCrossRefGoogle Scholar
  13. 13.
    Lo SH (1985) A new mesh generation scheme for arbitrary planar domains. Int J Numer Methods Eng 21:1403–1426MATHCrossRefGoogle Scholar
  14. 14.
    Lohner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8:1135–1149CrossRefGoogle Scholar
  15. 15.
    Moller P, Hansbo P (1995) On advancing front mesh generation in three dimensions. Int J Numer Methods Fluids 38:3551–3569MathSciNetGoogle Scholar
  16. 16.
    Peraire J, Peiro J, Formaggia L, Morgan K, Zienkiewicz OC (1988) Finite Euler computation in three-dimensions. Int J Numer Methods Fluids 26:2135–2159MATHGoogle Scholar
  17. 17.
    Rassineux A (1998) Generation and optimization of tetrahedral meshes by advancing front technique. Int J Numer Methods Fluids 41:651–674MATHGoogle Scholar
  18. 18.
    Guttman A (1984) Rtrees: a dynamic index structure for spatial searching. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp 47–57Google Scholar
  19. 19.
    Rudolf B (1971) Binary B-Trees for virtual memory. ACM-SIGFIDET Workshop, San Diego, California, Session 5B, pp 219–235Google Scholar
  20. 20.
    Foley TA, Nielson GM (1989) Knot selection for parametric spline interpolation. In: Schumaker L (ed) Mathematical methods in CAGD. Academic Press, New York, pp 445–467Google Scholar
  21. 21.
    Borouchaki H, Hecht F, Frey PJ (1997) Mesh gradation control. In: Proceedings of 6th International Meshing Roundtable, Sandia National Laboratories, pp 131–141Google Scholar
  22. 22.
    Owen SJ, Saigal S (1997) Neighborhood-based element sizing control for finite element surface meshing. In: Proceedings of 6th International Meshing Roundtable, Sandia National Laboratories, pp 143–154Google Scholar
  23. 23.
    George PL, Seveno E (1994) The advancing-front mesh generation method revisited. Int J Numer Methods Fluids 37:3605–3619MATHMathSciNetGoogle Scholar
  24. 24.
    Borouchaki H, Hecht F, Frey PJ (1997) H-Correction. INRIA Report No. 3199, INRIA, pp 29Google Scholar
  25. 25.
    Lohner R, Parikh P, Gumbert C (1988) Interactive generation of unstructured grid for three dimensional problems. Numerical grid generation in computational fluid mechanics ‘88. Pineridge Press, Swansea, pp 687–697Google Scholar
  26. 26.
    Owen SJ, Saigal S (2000) Surface mesh sizing control. Int J Numer Methods Fluids 47(1):289–312MathSciNetGoogle Scholar
  27. 27.
    Mello UT, Cavalcanti PR (2000) A point creation strategy for mesh generation using crystal lattices as templates. In: Proceedings of 9th International Meshing Roundtable, Sandia National Laboratories, pp 253–261Google Scholar
  28. 28.
    Zhu J (2003) A new type of size function respecting premeshed entities. In: Proceedings of 12th International Meshing Roundtable, Sandia National Laboratories, pp 403–413Google Scholar
  29. 29.
    Persson P (2004) PDE-based gradient limiting for mesh size functions. In: Proceedings of 13th International Meshing Roundtable, Sandia National Laboratories, pp 377–388Google Scholar
  30. 30.
    Moller T, Trumbore B (1997) Fast, minimum storage ray-triangle intersection. J Graphics Tools 2(1):21–28Google Scholar
  31. 31.
    Krysl P (2005) Computational complexity of the advancing front triangulation. Eng Comput 12:16–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • A. C. O. Miranda
    • 1
  • L. F. Martha
    • 1
  • P. A. Wawrzynek
    • 2
  • A. R. Ingraffea
    • 2
  1. 1.Department of Civil Engineering and Computer Graphics Technology Group (Tecgraf)Pontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Cornell Fracture GroupIthacaUSA

Personalised recommendations