Advertisement

Engineering with Computers

, Volume 22, Issue 1, pp 33–46 | Cite as

Issues related to the computer realization of a multidisciplinary and multiobjective optimization system

  • Elina Madetoja
  • Kaisa Miettinen
  • Pasi Tarvainen
Original Article

Abstract

Issues and novel ideas to be considered when developing computer realizations of complex multidisciplinary and multiobjective optimization systems are introduced. The aim is to discuss computer realizations that make possible both computationally efficient multidisciplinary analysis and multiobjective optimization of real world problems. We introduce software tools that make typically very time-consuming simulation processes more effective and, thus, enable even interactive multiobjective optimization with a real decision maker. In this paper, we first define a multidisciplinary and multiobjective optimization system and after that present an implementation overview of such problems including basic components participating in the solution process. Furthermore, interfaces and data flows between the components are described. A couple of important features related to the implementation are discussed in detail, for example, the usage of automatic differentiation. Finally, the ideas presented are illustrated with an industrial multiobjective optimization problem, when we describe numerical experiments related to quality properties in paper making.

Keywords

Multidisciplinary system Multiobjective optimization Computer realization Efficiency Paper making 

Notes

Acknowledgements

This research was financially supported by the National Technology Agency of Finland, project: NIMBUS—multiobjective optimization in product development. The authors wish to thank Doctor Heikki Kettunen from Metso Paper, Inc., Professor Jari P. Hämäläinen from the University of Kuopio and Docent Marko M. Mäkelä from the University of Jyväskylä.

References

  1. 1.
    Shubin GR (1995) Application of alternative multidisciplinary optimization formulations to a model problem for static aeroelasticity. J Comput Phys 118:73–85CrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandrov NM, Hussaini MY (eds) (1997) Multidisciplinary design optimization. In: State of the Art. SIAM Publications, PhiladelphiaGoogle Scholar
  3. 3.
    Giunta AA (1999) Sensitivity analysis method for aeroelastic aircraft models. Aircraft Des 2:207–230CrossRefGoogle Scholar
  4. 4.
    Olds J (1994) System sensitivity analysis applied to the conceptual design of a dual-fuel rocket SSTO. In: 5th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, AIAA paper 94-4339, Panama CityGoogle Scholar
  5. 5.
    Walsh JL, Townsend JC, Salas AO, Samareh JA, Mukhopadhyay V, Barthelemy J-F (2000) Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles part 1: formulation. AIAA paper 2000-0418, NASA Langley Research CenterGoogle Scholar
  6. 6.
    Walsh JL, Weston RP, a Samareh JA, Mason BH, Green LL, Biedron RT (2000) Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles part 2: preliminary results. In: 38th aerospace sciences meeting and exhibit, AIAA paper 2000-0419, Reno, NevadaGoogle Scholar
  7. 7.
    Tappeta RV, Renaud JE, Rodríguez JF (2002) An interactive multiobjective optimization design strategy for decision based multidisciplinary design. Eng Optim 34(5):523–544CrossRefGoogle Scholar
  8. 8.
    Kodiyalam S, Sobieszczanski-Sobieski J (2001) Multidisciplinary design optimization—some formal methods, framework requirements, and application to vehicle design. Int J Vehicle Des 25:3–22CrossRefGoogle Scholar
  9. 9.
    Salas AO, Townsend JC (1998) Framework requirements for MDO application development. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, AIAA paper 98-4740, St. LouisGoogle Scholar
  10. 10.
    Sobiesczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim 14(1):1–23CrossRefGoogle Scholar
  11. 11.
    Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Sobieszczanski-Sobieski J (1990) Sensitivity of complex, internally coupled systems. AIAA J 28(1):153–160CrossRefGoogle Scholar
  13. 13.
    Miettinen K (1999) Nonlinear Multiobjective Optimization. Kluwer, BostonzbMATHGoogle Scholar
  14. 14.
    Hämäläinen J (1993) Mathematical modeling and simulation of fluid flows in the headbox of paper machines. PhD Thesis, University of JyväskyläGoogle Scholar
  15. 15.
    Hämäläinen JP, Miettinen K, Tarvainen P, Toivanen J (2003) Interactive solution approach to a multiobjective optimization problem in a paper machine headbox design. J Optim Theory Appl 116(2):265–281CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Hiltunen K (1995) Mathematical and numerical modeling of consolidation processes in paper machines. PhD Thesis, University of JyväskyläGoogle Scholar
  17. 17.
    Gavelin G (1998) Paper machine design and operation: descriptions and explanations. Angus Wilde Publications, VancouverGoogle Scholar
  18. 18.
    Madetoja E, Tarvainen P (2003) A computer realization of multidisciplinary optimization system. Reports of the Department of Mathematical Information Technology, series B. Scientific Computing, vol 14, University of JyväskyläGoogle Scholar
  19. 19.
    Giordano FR, Weir MD, Fox W (1997) A first course in mathematical modeling, 2nd edn. Brooks/Cole Publishing Company, CaliforniaGoogle Scholar
  20. 20.
    Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiobjecive optimization: NIMBUS. Optimization 34:231–246CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW–NIMBUS on the Internet. Comput Oper Res 27(7–8):709–723CrossRefzbMATHGoogle Scholar
  22. 22.
    Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optim Eng 6(1):33–62CrossRefzbMATHGoogle Scholar
  23. 23.
    Madetoja E (2003) On interactive multiobjective optimization related to paper quality. Licentiate Thesis, University of JyväskyläGoogle Scholar
  24. 24.
    Madetoja E, Mäkelä MM (2006) On sensitivity analysis of nonsmooth multidisciplinary optimization problems in engineering process line applications. Struct Multidisciplinary Optim 31(5):355–362CrossRefGoogle Scholar
  25. 25.
    Barthelemy J-FM, Hall LE (1995) Automatic differentiation as a tool in engineering design. Struct Des 9:76–82Google Scholar
  26. 26.
    Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization: theory, approximation, and computation. SIAM, PhiladelphiaGoogle Scholar
  27. 27.
    Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170(3):909–922CrossRefzbMATHGoogle Scholar
  28. 28.
    Mäkelä MM, Neittaanmäki P (1992) Nonsmooth optimization: analysis and algorithms with applications to optimal control. World Scientific, SingaporezbMATHGoogle Scholar
  29. 29.
    Hiltunen K, Laitinen M, Niemistö A, Tarvainen P (2003) Using mathematical concepts in software design of computational mechanics. In: Råback P, Santaoja K, Stenberg R (eds) VIII Finnish Mechanics Days, Espoo. Helsinki University of Technology, Laboratory for Mechanics of MaterialsGoogle Scholar
  30. 30.
    Numerrin 2.0 (2003) Simulation software based on finite element method (in Finnish), 2003. Numerola OyGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • Elina Madetoja
    • 1
  • Kaisa Miettinen
    • 2
  • Pasi Tarvainen
    • 3
  1. 1.Department of PhysicsUniversity of KuopioKuopioFinland
  2. 2.Helsinki School of EconomicsHelsinkiFinland
  3. 3.Numerola Oy (Inc.)JyväskyläFinland

Personalised recommendations