Engineering with Computers

, Volume 21, Issue 2, pp 151–163 | Cite as

An advanced equation assembly module

  • Stephan WagnerEmail author
  • Tibor Grasser
  • Claus Fischer
  • Siegfried Selberherr
Original article


We present an advanced equation assembly module which has been developed for the simulation of semiconductor devices based on the Finite Boxes discretization scheme and is currently used in the general purpose device and circuit simulator Minimos-NT. Such simulations require the solution of a specific set of nonlinear partial differential equations which are discretized on a grid. The resulting nonlinear problem is solved by a damped Newton algorithm that demands the solution of a linear equation system at each step. The presented module is responsible for assembling these systems and takes into account several requirements of the simulation process. The underlying concepts, namely the representation of boundary conditions, physically motivated variable transformation, preelimination and numerical conditioning, are presented together with some examples.


Finite Boxes Linear equation systems Boundary conditions Interface conditions Device simulation Circuit simulation 


  1. 1.
    Institut für Mikroelektronik, Technische Universität Wien, Austria (2004) Minimos-NT 2.1. User’s Guide.
  2. 2.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, WienGoogle Scholar
  3. 3.
    Stratton R (1962) Diffusion of hot and cold electrons in semiconductor barriers. Phy Rev 126(6):2002–2014CrossRefGoogle Scholar
  4. 4.
    Bløtekjær K (1970) Transport equations for electrons in two-valley semiconductors. IEEE Trans Electron Devices ED-17(1):38–47CrossRefGoogle Scholar
  5. 5.
    Grasser T, Kosina H, Gritsch M, Selberherr S (2001) Using six moments of Boltzmann’s transport equation for device simulation. J Appl Phys 90(5):2389–2396CrossRefGoogle Scholar
  6. 6.
    Wachutka G (1990) Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans Computer-Aided Design 9:1141–1149CrossRefGoogle Scholar
  7. 7.
    Grasser T, Selberherr S (2001) Fully-coupled electro-thermal mixed-mode device simulation of SiGe HBT circuits. IEEE Trans.Electron Devices 48(7):1421–1427CrossRefGoogle Scholar
  8. 8.
    Grasser T, Tang T, Kosina H, Selberherr S (2003) A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc IEEE 91(2):251–274CrossRefGoogle Scholar
  9. 9.
    VanRoosbroeck W (1950) Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst Techn J 29:560–607Google Scholar
  10. 10.
    Schroeder D (1994) Modelling of interface carrier transport for device simulation. Springer Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Simlinger T (1996) Simulation von Heterostruktur-Feldeffekttransistoren. Dissertation, Technische Universität Wien.
  12. 12.
    Fischer C (1994) Bauelementsimulation in einer computergestützten Entwurfsumgebung. Dissertation, Technische Universität Wien.
  13. 13.
    Scharfetter D, Gummel H (1969) Large-signal analysis of a silicon read diode oscillator. IEEE Trans.Electron Devices ED-16(1):64–77CrossRefGoogle Scholar
  14. 14.
    Deuflhard P (1974) A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer Math 22:289–315CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Bank R, Rose D (1981) Global approximate Newton methods. Numer Math 37:279–295CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Van der Vorst H (1992) BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Saad Y, Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Saad Y (1990) A basic tool kit for sparse matrix computations. Moffett Field, CA 94035: Technical Report, RIACS, NASA Ames Research CenterGoogle Scholar
  19. 19.
    Ascher U, Markowich P, Schmeiser C, Steinrück H, Weiss R (1986) Conditioning of the steady state semiconductor device problem. Tech Rep 86-18, University of British ColumbiaGoogle Scholar
  20. 20.
    Fischer C, Selberherr S (1994) Optimum Scaling of Non-symmetric jacobian matrices for threshold pivoting preconditioners. In: International workshop on numerical modeling of processes and devices for integrated circuits NUPAD V, (Honolulu), pp 123–126Google Scholar
  21. 21.
    Barrett R, Chan MBT, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solution of linear systems: building blocks of iterative methods. SIAM, PhiladelphiaGoogle Scholar
  22. 22.
    McMacken J, Chamberlain S (1989) CHORD: A modular semiconductor device simulation development tool incorporating external network models. IEEE Trans Computer-Aided Design 8(8):826–836CrossRefGoogle Scholar
  23. 23.
    Rollins J, Choma J (1988) Mixed-mode PISCES-SPICE coupled circuit and device solver. IEEE Trans Computer-Aided Design 7:862–867CrossRefGoogle Scholar
  24. 24.
    Engl W, Laur R, Dirks H (1982) MEDUSA - a simulator for modular circuits. IEEE Trans Computer-Aided Design Int Circuits Syst 1(2):85–93CrossRefGoogle Scholar
  25. 25.
    Mayaram K, Pederson D (1992) Coupling algorithms for mixed-level ciruit and device simulation. IEEE Trans Computer-Aided Design 11(8):1003–1012CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Stephan Wagner
    • 1
    Email author
  • Tibor Grasser
    • 1
  • Claus Fischer
    • 3
  • Siegfried Selberherr
    • 2
  1. 1.Christian Doppler Laboratory for TCAD in Microelectronics at the Institute for MicroelectronicsTU ViennaWienAustria
  2. 2.Institute for MicroelectronicsTU ViennaWienAustria
  3. 3.Firma Dr. Claus FischerGerasdorf bei WienAustria

Personalised recommendations