Skip to main content
Log in

Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets

  • Published:
Constructive Approximation Aims and scope

Abstract

We study many properties of level-dependent Hermite subdivision, focusing on schemes preserving polynomial and exponential data. We specifically consider interpolatory schemes, which give rise to level-dependent multiresolution analyses through a prediction-correction approach. A result on the decay of the associated multiwavelet coefficients, corresponding to a uniformly continuous and differentiable function, is derived. It makes use of the approximation of any such function with a generalized Taylor formula expressed in terms of polynomials and exponentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conti, C., Cotronei, M., Sauer, T.: Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42, 1055–1079 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conti, C., Cotronei, M., Sauer, T.: Convergence of level-dependent Hermite subdivision schemes. Appl. Numer. Math. 116, 119–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conti, C., Merrien, J.-L., Romani, L.: Dual Hermite subdivision schemes of de Rham-type. BIT 54, 955–977 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, C., Romani, L.: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. J. Comput. Appl. Math. 236, 543–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conti, C., Romani, L., Unser, M.: Ellipse-preserving Hermite interpolation and subdivision. J. Math. Anal. Appl. 426, 211–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conti, C., Romani, L., Yoon, J.: Approximation order and approximate sum rules in subdivision. J. Approx. Theory 207, 380–401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cotronei, M., Sissouno, N.: A note on Hermite multiwavelets with polynomial and exponential vanishing moments. Appl. Numer. Math. 120, 21–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubuc, S.: Scalar and Hermite subdivision schemes. Appl. Comput. Harmon. Anal. 21, 376–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubuc, S., Merrien, J.-L.: Convergent vector and Hermite subdivision schemes. Constr. Approx. 23, 1–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubuc, S., Merrien, J.-L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29, 219–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyn, N., Kounchev, O., Levin, D., Render, H.: Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters. Appl. Comput. Harmon. Anal. 37, 288–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dyn, N.: Interpolating Subdivision Schemes for the Generation of Curves and Surfaces, pp. 91–106. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  13. Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193, 594–621 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyn, N., Levin, D.: Analysis of Hermite-type subdivision schemes. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII. Vol 2: Wavelets and Multilevel Approximation, pp. 117–124. World Scientific, Singapore (1995)

    Google Scholar 

  15. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyn, N., Levin, D., Luzzatto, A.: Exponential reproducing subdivision schemes. Found. Comput. Math. 3, 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27(3), 325–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grohs, P., Wallner, J.: Definability and stability of multiscale decompositions for manifold-valued data. J. Franklin Inst. 349, 1648–1664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, B., Yu, T., Xue, Y.: Noninterpolatory Hermite subdivision schemes. Math. Comput. 74, 1345–1367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoffmann, W., Papiernik, W., Sauer, T.: Method and device for guiding the movement of a moving machine element on a numerically controlled machine, Patent WO002006063945A1 (2006)

  21. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, London (2009)

    MATH  Google Scholar 

  22. Merrien, J.-L., Sauer, T.: From Hermite to stationary subdivision schemes in one and several variables. Adv. Comput. Math. 36, 547–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moosmüller, C.: \( C^1 \) analysis of Hermite subdivision schemes on manifolds. SIAM J. Numer. Anal. 54, 3003–3031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moosmüller, C.: Hermite subdivision on manifolds via parallel transport. Adv. Comput. Math. 43, 1059–1074 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Uhlmann, V., Delgado-Gonzalo, R., Conti, C., Romani, L., Unser, M.: Exponential Hermite splines for the analysis of biomedical images. In: Proceedings of the 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), pp. 1631–1634 (2014)

  26. Unser, M., Blu, T.: Cardinal exponential splines: part I—theory and filtering algorithms. Trans. Signal Proc. 53, 1425–1438 (2005)

    Article  MATH  Google Scholar 

  27. Vonesch, C., Blu, T., Unser, M.: Generalized Daubechies wavelet families. IEEE Trans. Signal Process. 55, 4415–4429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics.” Most of this research was done while the second author was with the University of Passau. The second author also thanks the Department of Chemical and Biological Engineering, Princeton University, for their hospitality. The fourth author was partially supported by the Emmy Noether Research Group KR 4512/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Sauer.

Additional information

Communicated by Peter Oswald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotronei, M., Moosmüller, C., Sauer, T. et al. Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets. Constr Approx 50, 341–366 (2019). https://doi.org/10.1007/s00365-018-9444-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9444-4

Keywords

Mathematics Subject Classification

Navigation