Advertisement

Computing a Quantity of Interest from Observational Data

  • Ronald DeVore
  • Simon FoucartEmail author
  • Guergana Petrova
  • Przemyslaw Wojtaszczyk
Article
  • 63 Downloads

Abstract

Scientific problems often feature observational data received in the form \(w_1=l_1(f),\ldots \),\(w_m=l_m(f)\) of known linear functionals applied to an unknown function f from some Banach space \(\mathcal {X}\), and it is required to either approximate f (the full approximation problem) or to estimate a quantity of interest Q(f). In typical examples, the quantities of interest can be the maximum/minimum of f or some averaged quantity such as the integral of f, while the observational data consists of point evaluations. To obtain meaningful results about such problems, it is necessary to possess additional information about f, usually as an assumption that f belongs to a certain model class \(\mathcal {K}\) contained in \(\mathcal {X}\). This is precisely the framework of optimal recovery, which produced substantial investigations when the model class is a ball in a smoothness space, e.g., when it is a unit ball in Lipschitz, Sobolev, or Besov spaces. This paper is concerned with other model classes described by approximation processes, as studied in DeVore et al. [Data assimilation in Banach spaces, (To Appear)]. Its main contributions are: (1) designing implementable optimal or near-optimal algorithms for the estimation of quantities of interest, (2) constructing linear optimal or near-optimal algorithms for the full approximation of an unknown function using its point evaluations. While the existence of linear optimal algorithms for the approximation of linear functionals Q(f) is a classical result established by Smolyak, a numerically friendly procedure that performs this approximation is not generally available. In this paper, we show that in classical recovery settings, such linear optimal algorithms can be produced by constrained minimization methods. We illustrate these techniques on several examples involving the computation of integrals using point evaluation data. In addition, we show that linearization of optimal algorithms can be achieved for the full approximation problem in the important situation where the \(l_j\) are point evaluations and \(\mathcal {X}\) is a space of continuous functions equipped with the uniform norm. It is also revealed how quasi-interpolation theory enables the construction of linear near-optimal algorithms for the recovery of the underlying function.

Keywords

Optimal recovery Data fitting Chebyshev centers \(\ell _1\)-minimization Quadrature formulas Reproducing Kernel Hilbert spaces 

Mathematics Subject Classification

41A65 46N40 65Y20 41A46 41A05 46A22 90C05 65D32 46E22 

References

  1. 1.
    Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harm. Anal. 32, 357–388 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adcock, B., Hansen, A.C., Poon, C.: Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal. 45, 3132–3167 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Adcock, B., Platte, R.B., Shadrin, A.: Optimal sampling rates for approximating analytic functions from pointwise samples. IMA J. Numer. Anal. (2018).  https://doi.org/10.1093/imanum/dry024 Google Scholar
  4. 4.
    Bakhvalov, N.S.: On the optimality of linear methods for operator approximation in convex classes of functions. USSR Comput. Math. Math. Phys. 11, 244–249 (1971)CrossRefzbMATHGoogle Scholar
  5. 5.
    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for Greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Data assimilation in reduced modeling. SIAM/ASA J. Uncertain. Quant. 5, 1–29 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bojanov, B.: Optimal recovery of functions and integrals. First European Congress of Mathematics, Vol. I (Paris, 1992), pp. 371–390, Progress in Mathematics, 119, Birkhäuser, Basel (1994)Google Scholar
  8. 8.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best \(k\)-term approximation. JAMS 22, 211–231 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Coppersmith, D., Rivlin, T.: The growth of polynomials bounded at equally spaced points. SIAM J. Math. Anal. 23, 970–983 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Creutzig, J., Wojtaszczyk, P.: Linear versus nonlinear algorithms for linear problems. J. Complex. 20, 807–820 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    CVX Research, Inc. CVX: matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)
  13. 13.
    DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    DeVore, R., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer Grundlehren, Berlin (1993)zbMATHGoogle Scholar
  15. 15.
    DeVore, R., Petrova, G., Wojtaszczyk, P.: Data assimilation and sampling in Banach spaces. P. Calcolo 54, 1–45 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun Guide. Pafnuty Publications, Oxford (2014)Google Scholar
  17. 17.
    Elad, M.: Sparse and Redundant Representations. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kalman, J.A.: Continuity and convexity of projections and barycentric coordinates in convex polyhedra. Pac. Math. J. 11, 1017–1022 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lindenstrauss, J.: Extension property for compact operators. Mem. Am. Math. Soc. 48 (1964)Google Scholar
  21. 21.
    Marcinkiewicz, J., Zygmund, A.: Mean values of trigonometrical polynomials. Fundamenta Mathematicae 28, 131–166 (1937)zbMATHGoogle Scholar
  22. 22.
    Micchelli, C., Rivlin, T.: Lectures on optimal recovery. Numerical analysis (Lancaster, 1984), 21–93, Lecture Notes in Math., 1129, Springer, Berlin (1985)Google Scholar
  23. 23.
    Micchelli, C., Rivlin, T., Winograd, S.: The optimal recovery of smooth functions. Numerische Mathematik 26, 191–200 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Milman, V., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986)zbMATHGoogle Scholar
  25. 25.
    Osipenko, KYu.: Best approximation of analytic functions from information about their values at a finite number of points. Math. Notes Acad. Sci. USSR 19(1), 17–23 (1976)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Platte, R., Trefethen, L., Kuijlaars, A.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53, 308–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schönhage, A.: Fehlerfortpflantzung bei Interpolation. Numer. Math. 3, 62–71 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Traub, J., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, New York (1980)zbMATHGoogle Scholar
  29. 29.
    Turetskii, A.H.: The bounding of polynomials prescribed at equally distributed points. Proc. Pedag. Inst. Vitebsk 3, 117–127 (1940). [Russian]Google Scholar
  30. 30.
    Wilson, M.W.: Necessary and sufficient conditions for equidistant quadrature formula. SIAM J. Numer. Anal. 7(1), 134–141 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zippin, M.: Extension of Bounded Linear Operators, Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1703–1741. North-Holland, Amsterdam (2003)zbMATHGoogle Scholar
  32. 32.
    Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ronald DeVore
    • 1
  • Simon Foucart
    • 1
    Email author
  • Guergana Petrova
    • 1
  • Przemyslaw Wojtaszczyk
    • 2
    • 3
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Interdisciplinary Center for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland
  3. 3.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations