# Formal Duality in Finite Cyclic Groups

- 41 Downloads

## Abstract

The notion of formal duality in finite Abelian groups appeared recently in relation to spherical designs, tight sphere packings, and energy minimizing configurations in Euclidean spaces. For finite cyclic groups, it is conjectured that there are no primitive formally dual pairs besides the trivial one and the TITO configuration. This conjecture has been verified for cyclic groups of prime power order, as well as of square-free order. In this paper, we will confirm the conjecture for other classes of cyclic groups, namely almost all cyclic groups of order a product of two prime powers, with finitely many exceptions for each pair of primes, or whose order *N* satisfies \(p\mid \!\mid N\), where *p* is a prime satisfying the so-called self-conjugacy property with respect to *N*. For the above proofs, various tools were needed: the *field descent method*, used chiefly for the circulant Hadamard conjecture, the techniques of Coven and Meyerowitz for sets that tile \(\mathbb {Z}\) or \(\mathbb {Z}_N\) by translations, dubbed herein as *the polynomial method*, as well as basic number theory of cyclotomic fields, especially the splitting of primes in a given cyclotomic extension.

## Keywords

Formal duality Energy minimization Field descent method Self-conjugacy## Mathematics Subject Classification

43A46 11L40 20K01 13F20## References

- 1.Cohn, H., Kumar, A., Reiher, C., Schürmann, A.: Formal duality and generalizations of the Poisson summation formula. Discrete Geom. Algebr. Comb. Contemp. Math.
**625**, 123–140 (2014)MathSciNetzbMATHGoogle Scholar - 2.Cohn, H., Kumar, A., Schürmann, A.: Ground states and formal duality relations in the gaussian core model. Phys. Rev. E
**80**, 061116 (2009)CrossRefGoogle Scholar - 3.Córdoba, A.: La formule sommatoire de Poisson. C. R. Acad. Sci. Paris Sér. I Math.
**306**(8), 373–376 (1988)MathSciNetzbMATHGoogle Scholar - 4.Coven, E.M., Meyerowitz, A.: Tiling the integers with translates of one finite set. J. Algebra
**212**(1), 161–174 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 5.de Bruijn, N.G.: On the factorization of cyclic groups. Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math.
**15**, 370–377 (1953)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Georgakopoulos, A., Kolountzakis, M.N.: On particles in equilibrium on the real line. Proc. Am. Math. Soc.
**145**(8), 3501–3511 (2017)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008). (Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles)zbMATHGoogle Scholar
- 8.Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra
**224**(1), 91–109 (2000)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Leung, K.H., Schmidt, B.: The field descent method. Des. Codes Cryptogr.
**36**(2), 171–188 (2005)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Malikiosis, R. D., Kolountzakis, M. N.: Fuglede’s conjecture on cyclic groups of order \(p^n q\). Discrete Anal. (2017). Paper No. 12, 16ppGoogle Scholar
- 11.Marcus, D.A.: Number Fields. Springer, New York (1977). (Universitext)CrossRefzbMATHGoogle Scholar
- 12.Neukirch, J.: Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin (1999). (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder)Google Scholar
- 13.Ramanujan, S.: On Certain Trigonometrical Sums and Their Applications in the Theory of Numbers [Trans. Cambridge Philos. Soc.
**22**(1918), no. 13, 259–276], Collected Papers of Srinivasa Ramanujan, pp. 179–199. AMS Chelsea Publ., Providence (2000)Google Scholar - 14.Rédei, L.: Ein Beitrag zum Problem der Faktorisation von endlichen Abelschen Gruppen. Acta Math. Acad. Sci. Hungar.
**1**, 197–207 (1950)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Rédei, L.: Über das Kreisteilungspolynom. Acta Math. Acad. Sci. Hungar.
**5**, 27–28 (1954)MathSciNetCrossRefzbMATHGoogle Scholar - 16.Rose, H.E.: A Course in Number Theory, 2nd edn. Oxford Science Publications, New York (1994)zbMATHGoogle Scholar
- 17.Ryser, H. J.: Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14. Published by The Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York (1963)Google Scholar
- 18.Schmidt, B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc.
**12**(4), 929–952 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 19.Schmidt, B.: Characters and Cyclotomic Fields in Finite Geometry, Lecture Notes in Mathematics, vol. 1797. Springer, Berlin (2002)CrossRefGoogle Scholar
- 20.Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika
**11**, 131–136 (1964)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Schüler, R.: Formally dual subsets of cyclic groups of prime power order. Beitr. Algebra Geom.
**58**(3), 535–548 (2017)MathSciNetCrossRefzbMATHGoogle Scholar - 22.Schwartz, R.E.: The five-electron case of Thomson’s problem. Exp. Math.
**22**(2), 157–186 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Tao, T., Vu, V.: Additive Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
- 24.Turyn, R.J.: Character sums and difference sets. Pac. J. Math.
**15**, 319–346 (1965)MathSciNetCrossRefzbMATHGoogle Scholar - 25.Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997)CrossRefGoogle Scholar
- 26.Wieferich, A.: Zum letzten Fermatschen theorem. J. Reine Angew. Math.
**136**, 293–302 (1909)MathSciNetzbMATHGoogle Scholar - 27.Xia, J., Park, S., Cohn, H.: Classification of formal duality with an example in sphere packing, 21pp. https://math.mit.edu/research/undergraduate/urop-plus/documents/2016/Xia.pdf