Formal Duality in Finite Cyclic Groups

  • Romanos Diogenes Malikiosis


The notion of formal duality in finite Abelian groups appeared recently in relation to spherical designs, tight sphere packings, and energy minimizing configurations in Euclidean spaces. For finite cyclic groups, it is conjectured that there are no primitive formally dual pairs besides the trivial one and the TITO configuration. This conjecture has been verified for cyclic groups of prime power order, as well as of square-free order. In this paper, we will confirm the conjecture for other classes of cyclic groups, namely almost all cyclic groups of order a product of two prime powers, with finitely many exceptions for each pair of primes, or whose order N satisfies \(p\mid \!\mid N\), where p is a prime satisfying the so-called self-conjugacy property with respect to N. For the above proofs, various tools were needed: the field descent method, used chiefly for the circulant Hadamard conjecture, the techniques of Coven and Meyerowitz for sets that tile \(\mathbb {Z}\) or \(\mathbb {Z}_N\) by translations, dubbed herein as the polynomial method, as well as basic number theory of cyclotomic fields, especially the splitting of primes in a given cyclotomic extension.


Formal duality Energy minimization Field descent method Self-conjugacy 

Mathematics Subject Classification

43A46 11L40 20K01 13F20 


  1. 1.
    Cohn, H., Kumar, A., Reiher, C., Schürmann, A.: Formal duality and generalizations of the Poisson summation formula. Discrete Geom. Algebr. Comb. Contemp. Math. 625, 123–140 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cohn, H., Kumar, A., Schürmann, A.: Ground states and formal duality relations in the gaussian core model. Phys. Rev. E 80, 061116 (2009)CrossRefGoogle Scholar
  3. 3.
    Córdoba, A.: La formule sommatoire de Poisson. C. R. Acad. Sci. Paris Sér. I Math. 306(8), 373–376 (1988)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Coven, E.M., Meyerowitz, A.: Tiling the integers with translates of one finite set. J. Algebra 212(1), 161–174 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de Bruijn, N.G.: On the factorization of cyclic groups. Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15, 370–377 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Georgakopoulos, A., Kolountzakis, M.N.: On particles in equilibrium on the real line. Proc. Am. Math. Soc. 145(8), 3501–3511 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008). (Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles)zbMATHGoogle Scholar
  8. 8.
    Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra 224(1), 91–109 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Leung, K.H., Schmidt, B.: The field descent method. Des. Codes Cryptogr. 36(2), 171–188 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Malikiosis, R. D., Kolountzakis, M. N.: Fuglede’s conjecture on cyclic groups of order \(p^n q\). Discrete Anal. (2017). Paper No. 12, 16ppGoogle Scholar
  11. 11.
    Marcus, D.A.: Number Fields. Springer, New York (1977). (Universitext)CrossRefzbMATHGoogle Scholar
  12. 12.
    Neukirch, J.: Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin (1999). (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder)Google Scholar
  13. 13.
    Ramanujan, S.: On Certain Trigonometrical Sums and Their Applications in the Theory of Numbers [Trans. Cambridge Philos. Soc. 22 (1918), no. 13, 259–276], Collected Papers of Srinivasa Ramanujan, pp. 179–199. AMS Chelsea Publ., Providence (2000)Google Scholar
  14. 14.
    Rédei, L.: Ein Beitrag zum Problem der Faktorisation von endlichen Abelschen Gruppen. Acta Math. Acad. Sci. Hungar. 1, 197–207 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rédei, L.: Über das Kreisteilungspolynom. Acta Math. Acad. Sci. Hungar. 5, 27–28 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rose, H.E.: A Course in Number Theory, 2nd edn. Oxford Science Publications, New York (1994)zbMATHGoogle Scholar
  17. 17.
    Ryser, H. J.: Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14. Published by The Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York (1963)Google Scholar
  18. 18.
    Schmidt, B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schmidt, B.: Characters and Cyclotomic Fields in Finite Geometry, Lecture Notes in Mathematics, vol. 1797. Springer, Berlin (2002)CrossRefGoogle Scholar
  20. 20.
    Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika 11, 131–136 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schüler, R.: Formally dual subsets of cyclic groups of prime power order. Beitr. Algebra Geom. 58(3), 535–548 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schwartz, R.E.: The five-electron case of Thomson’s problem. Exp. Math. 22(2), 157–186 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tao, T., Vu, V.: Additive Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  24. 24.
    Turyn, R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997)CrossRefGoogle Scholar
  26. 26.
    Wieferich, A.: Zum letzten Fermatschen theorem. J. Reine Angew. Math. 136, 293–302 (1909)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Xia, J., Park, S., Cohn, H.: Classification of formal duality with an example in sphere packing, 21pp.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations