Advertisement

Constructive Approximation

, Volume 47, Issue 1, pp 163–210 | Cite as

Equidistribution of Jellium Energy for Coulomb and Riesz Interactions

  • Mircea PetracheEmail author
  • Simona Rota Nodari
Article

Abstract

For general dimension d, we prove the equidistribution of energy at the micro-scale in \(\mathbb {R}^{d}\) for the optimal point configurations appearing in Coulomb gases at zero temperature. More precisely, we show that, after blow-up at the scale corresponding to the interparticle distance, the value of the energy in any large enough set is completely determined by the macroscopic density of points. This uses the “jellium energy” which was previously shown to control the next-order term in the large particle number asymptotics of the minimum energy. As a corollary, we obtain sharp error bounds on the discrepancy between the number of points and its expected average of optimal point configurations for Coulomb gases, extending previous results valid only for 2-dimensional log-gases. For Riesz gases with interaction potentials \(g(x)=|x|^{-s}, s\in ]\min \{0,d-2\},d[\), we prove the same equidistribution result under an extra hypothesis on the decay of the localized energy, which we conjecture to hold for minimizing configurations. In this case, we use the Caffarelli–Silvestre description of the nonlocal fractional Laplacians in \(\mathbb {R}^{d}\) to render the problem local.

Keywords

Coulomb gases Riesz gases Renormalized energy Equidistribution Crystallization 

Mathematics Subject Classification

82B05 82B21 82D05 

References

  1. 1.
    Aizenman, M., Martin, P.A.: Structure of Gibbs states of one dimensional Coulomb systems. Commun. Math. Phys. 78, 99–116 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alberti, G., Choksi, R., Otto, F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22, 569–605 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ameur, Y., Ortega-Cerdà, J.: Beurling–Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal. 263, 1825–1861 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 18. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  5. 5.
    Atiyah, M., Sutcliffe, P.: The geometry of point particles, proceedings: mathematical. Phys. Eng. Sci. 458, 1089–1115 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. arXiv:1510.02074 (2015)
  7. 7.
    Bausch, A.R., Bowick, M.J., Cacciuto, A., Dinsmore, A.D., Hsu, M.F., Nelson, D.R., Nikolaides, M.G., Travesset, A., Weitz, D.A.: Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003)CrossRefGoogle Scholar
  8. 8.
    Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–134 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. arXiv:1404.4485 (2014)
  10. 10.
    Bethuel, F., Brezis, H., Helein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhauser, Boston (1994)zbMATHGoogle Scholar
  11. 11.
    Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bourgade, P., Erdős, L., Yau, H.-T.: Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys. 53, 095221 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bourgade, P., Erdös, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332, 261–353 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bourgade, P., Erdős, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163, 1127–1190 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bourgade, P., Yau, H.-T., Yin, J.: The local circular law for random matrices. Probab. Theory Relat. Fields 159, 545–595 (2014). part II ibid. 619–660Google Scholar
  16. 16.
    Bourne, D.P., Peletier, M.A., Theil, F.: Optimality of the triangular lattice for a particle system with Wasserstein interaction. Commun. Math. Phys. 329, 117–140 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bowick, M.J., Cacciuto, A., Nelson, D.R., Travesset, A.: Crystalline order on a sphere and the generalized Thomson problem. Phys. Rev. Lett. 89, 185502 (2002)CrossRefGoogle Scholar
  18. 18.
    Bowick, M.J., Cacciuto, A., Nelson, D.R., Travesset, A.: Crystalline particle packings on a sphere with long-range power-law potentials. Phys. Rev. B 73, 024115 (2006)CrossRefGoogle Scholar
  19. 19.
    Bowick, M.J., Nelson, D.R., Travesset, A.: Interacting topological defects on frozen topographies. Phys. Rev. B 62, 8738 (2000)CrossRefGoogle Scholar
  20. 20.
    Brascamp, H.J., Lieb, E.H.: Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, in Inequalities. Springer, pp. 403–416 (2002)Google Scholar
  21. 21.
    Brauchart, J.S., Dragnev, P.D., Saff, E.B.: Riesz external field problems on the hypersphere and optimal point separation. Potential Anal. 41, 647–678 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578, 31–61 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Caffarelli, L.A., Roquejoffre, J.-M., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chafaï, D., Gozlan, N., Zitt, P.-A.: First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24, 2371–2413 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Correggi, M., Rougerie, N., Yngvason, J.: The transition to a giant vortex phase in a fast rotating Bose–Einstein condensate. Commun. Math. Phys. 303, 451–508 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Correggi, M., Yngvason, J.: Energy and vorticity in fast rotating Bose–Einstein condensates. J. Phys. A Math. Theor. 41, 445002 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Dyson, F.J.: Statistical theory of the energy levels of complex systems. i. J. Math. Phys. 3, 140–156 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Evans, L.C., Gariepy, R.F.: Measure Theory and the Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  32. 32.
    Forrester, P.J.: Log-Gases and Random Matrices (LMS-34). Princeton University Press, Princeton (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Frostman, O.: Potentiel d’équilibre et capacité des ensembles, PhD thesis, Gleerup (1935)Google Scholar
  34. 34.
    Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Girvin, S.M.: Introduction to the fractional quantum Hall effect. In: The Quantum Hall Effect. Springer, pp. 133–162 (2005)Google Scholar
  36. 36.
    Heitmann, R.C., Radin, C.: The ground state for sticky disks. J. Stat. Phys. 22, 281–287 (1980)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Jancovici, B., Lebowitz, J.L., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72, 773–787 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30, 721–746 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kohyama, T., Gompper, G.: Defect scars on flexible surfaces with crystalline order. Phys. Rev. Lett. 98, 198101 (2007)CrossRefGoogle Scholar
  40. 40.
    Kunz, H.: The one-dimensional classical electron gas. Ann. Phys. 85, 303–335 (1974)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Landkof, N.S.: Foundations of Modern Potential Theory, vol. 80. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  42. 42.
    Leblé, Local microscopic behavior for 2d coulomb gases. arXiv:1510.01506 (2015)
  43. 43.
    Leblé,T., Serfaty, S.: Large deviation principle for empirical fields of log and riesz gases. arXiv:1502.02970, updated version available at http://cims.nyu.edu/~thomasl/papers/Large_Deviations_Empirical_Fields_Leble_Serfaty_new.pdf (2015)
  44. 44.
    Leblé, T., Serfaty, S.: Fluctuations of two-dimensional coulomb gases. arXiv:1609.08088 (2016)
  45. 45.
    Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2, 682–693 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field. J. Math. Phys. 4, 533–543 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  48. 48.
    Penrose, O., Smith, E.R.: Thermodynamic limit for classical systems with Coulomb interactions in a constant external field. Commun. Math. Phys. 26, 53–77 (1972)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Petrache, M., Serfaty, S.: Next Order Asymptotics and Renormalized Energy for Riesz Interactions. J. Inst. Math. Jussieu, FirstView, 1–69 (2016)Google Scholar
  50. 50.
    Radin, C.: The ground state for soft disks. J. Stat. Phys. 26, 365–373 (1981)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Rota Nodari, S., Serfaty, S.: Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not. 2015, 3035–3093 (2015)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 519–605 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87, 023618 (2013)CrossRefGoogle Scholar
  54. 54.
    Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall phases and plasma analogy in rotating trapped Bose gases. J. Stat. Phys. 154, 2–50 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316. Springer, Berlin (1997)CrossRefGoogle Scholar
  57. 57.
    Sandier, E., Serfaty, S.: Improved lower bounds for Ginzburg–Landau energies via mass displacement. Anal. PDE 4, 757–795 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Sandier, E., Serfaty, S.: 1D log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Relat. Fields 162, 795–846 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)Google Scholar
  61. 61.
    Sari, R.R., Merlini, D.: On the \(\nu \)-dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Stat. Phys. 14, 91–100 (1976)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Serfaty, S.: Coulomb gases and Ginzburg–Landau vortices, vol. 21 of Zurich Lectures in Advanced Mathematics, EMS (2015)Google Scholar
  63. 63.
    Shub, M., Smale, S.: Complexity of Bezout’s theorem: III. Condition number and packing. J. Complex. 9, 4–14 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sütő, A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005)CrossRefGoogle Scholar
  67. 67.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Torquato, S.: Hyperuniformity and its Generalizations. arXiv:1607.08814 (2016)
  69. 69.
    Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177, 463–508 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)Google Scholar
  72. 72.
    Zachary, C.E., Torquato, S.: Hyperuniformity in point patterns and two-phase random heterogeneous media. J. Stat. Mech. Theory Exp. 2009, P12015 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Max-Planck Institute for MathematicsBonnGermany
  2. 2.Institut de Mathématiques de Bourgogne (IMB), CNRS, UMR 5584Université Bourgogne Franche-ComtéDijonFrance

Personalised recommendations