Constructive Approximation

, Volume 43, Issue 1, pp 15–45 | Cite as

Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions

  • Aline BonamiEmail author
  • Abderrazek Karoui


For fixed c, prolate spheroidal wave functions (PSWFs), denoted by \(\psi _{n, c}\), form an orthogonal basis with remarkable properties for the space of band-limited functions with bandwith c. They have been widely studied and used after the seminal work of D. Slepian and his co-authors. In several applications, uniform estimates of the \(\psi _{n,c}\) in n and c are needed. To progress in this direction, we push forward the uniform approximation error bounds and give an explicit approximation of their values at 1 in terms of the Legendre complete elliptic integral of the first kind. Also, we give an explicit formula for the accurate approximation of the eigenvalues of the Sturm–Liouville operator associated with the PSWFs.


Prolate spheroidal wave functions Asymptotic and uniform estimates Eigenvalues and eigenfunctions Sturm–Liouville operator 

Mathematics Subject Classification

Primary 42C10 65L70 Secondary 41A60 65L15 


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publication, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Bonami, A., Karoui, A.: Uniform bounds of prolate spheroidal wave functions and eigenvalues decay. C. R. Math. Acad. Sci. Paris 352, 229–234 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonami, A., Karoui, A.: Spectral decay of time and frequency limiting operator. Appl. Comput. Harmon. Anal. (to appear)Google Scholar
  5. 5.
    Boyd, J.P.: Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms. J. Comput. Phys. 199, 688–716 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal. 25(2), 168–176 (2003)CrossRefGoogle Scholar
  7. 7.
    Dickinson, R.E.: On exact and approximate linear theory of vertically propagating planetary Rossby waves forced at a spherical lower boundary. Mon. Weather Rev. 96(7), 405–415 (1968)CrossRefGoogle Scholar
  8. 8.
    Dunster, Y.M.: Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17(6), 1495–1524 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Flammer, C.: Spheroidal Wave Functions. Stanford University Press, CA (1957)zbMATHGoogle Scholar
  10. 10.
    Gatteschi, L.: Limitazione degli errori nelle formule asintotiche per le funzioni speciali. (Italian) Univ. e Politec. Torino. Rend. Sem. Mat. 16, 83–94 (1957)MathSciNetGoogle Scholar
  11. 11.
    Glasser, M.L., Klamkin, M.S.: Some integrals of squares of Bessel functions. Util. Math. 12, 315–316 (1977)MathSciNetGoogle Scholar
  12. 12.
    Gosse, L.: Compressed sensing with preconditioning for sparse recovery with subsampled matrices of Slepian prolate functions. Ann. Univ. Ferrara Sez. VII Sci. Math. 59, 81–116 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis Series, Birkhäser. Springer, New York (2013)Google Scholar
  14. 14.
    Karoui, A., Moumni, T.: New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal. 24(3), 269–289 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—III. The dimension of space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, L.W., Kang, X.K., Leong, M.S.: Spheroidal Wave Functions in Electromagnetic Theory. Wiley, London (2001)CrossRefGoogle Scholar
  18. 18.
    Lin, W., Kovvali, N., Carin, L.: Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Comput. Phys. Commun. 175, 78–85 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Miles, J.W.: Asymptotic approximations for prolate spheroidal wave functions. Stud. Appl. Math. 54(4), 315–349 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Miles, J.W.: Asymptotic eigensolutions of Laplace’s tidal equation. Proc. R. Soc. Lond. A 353(1674), 377–400 (1977)zbMATHCrossRefGoogle Scholar
  21. 21.
    Müller, R.: On the structure of the global linearized primitive equations part II: Laplace’s tidal equations. Beitr. Phys. Atmos. 62(2), 112–125 (1989)zbMATHGoogle Scholar
  22. 22.
    Müller, R.: Stable and unstable eigensolutions of Laplace’s tidal equations for zonal wavenumber zero. Adv. Atmos. Sci. 10(1), 21–40 (1993)CrossRefGoogle Scholar
  23. 23.
    Nikoforov, A.N., Uvarov, V.B.: Special Functions of Mathematical Physics, translated from the Russian edition. Birkhäser, Basel (1988)Google Scholar
  24. 24.
    Niven, C.: On the conduction of heat in ellipsoids of revolution. Philos. Trans. R. Soc. Lond. 171, 117–151 (1880)zbMATHCrossRefGoogle Scholar
  25. 25.
    Oconnor, W.P.: On the application of the spheroidal wave equation to the dynamical theory of the long-period zonal tides in a global ocean. Proc. R. Soc. Lond. A 439(1905), 189–196 (1992)CrossRefGoogle Scholar
  26. 26.
    Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)Google Scholar
  27. 27.
    Osipov, A.: Certain inequalities involving prolate spheroidal wave functions and associated quantities. Appl. Comput. Harmon. Anal. 35, 359–393 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40, 43–64 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Slepian, D.: Some asymptotic expansions for prolate spheroidal wave functions. J. Math. Phys. 44(2), 99–140 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Colloquium Publications, vol. XXIII. American Mathematical Society, Providence, RI (1975)Google Scholar
  32. 32.
    Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wave functions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Walter, G., Soleski, T.: A new friendly method of computing prolate spheroidal wave functions and wavelets. Appl. Comput. Harmon. Anal. 19, 432–443 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, L.L.: Analysis of spectral approximations using prolate spheroidal wave functions. Math. Comput. 79(270), 807–827 (2010)zbMATHCrossRefGoogle Scholar
  35. 35.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London (1966)zbMATHGoogle Scholar
  36. 36.
    Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Fédération Denis-Poisson, MAPMO-UMR 7349, Département de MathématiquesUniversité d’OrléansOrléans Cedex 2France
  2. 2.Department of Mathematics, Faculty of Sciences of BizerteUniversity of CarthageTunisTunisia

Personalised recommendations