Constructive Approximation

, Volume 41, Issue 1, pp 1–22 | Cite as

A Bernstein–Bézier Basis for Arbitrary Order Raviart–Thomas Finite Elements



A Bernstein–Bézier basis is developed for \({\varvec{H}}({{\mathrm{div}}})\)-conforming finite elements that gives a clear separation between the curls of the Bernstein basis for the polynomial discretization of the space \(H^1\), and the noncurls that characterize the specific \({\varvec{H}}({{\mathrm{div}}})\) finite element space (Raviart–Thomas in our case). The resulting basis has two distinct components reflecting this separation with the basis functions in each component having a natural identification with a domain point, or node, on the element. It is shown that the basis retains the favorable properties of the Bernstein basis that were used in Ainsworth et al. (SIAM J Sci Comput 3087–3109, 2011) to develop efficient computational procedures for the application of the elements.


Spectral/\(hp\) finite element Bernstein polynomials  \({\varvec{H}}({{\mathrm{div}}})\) finite elements Sum-factorisation Raviart–Thomas space Maxwell eigenvalue problem 

Mathematics Subject Classification



  1. 1.
    Ainsworth, M., Andriamaro, G., Davydov, O.: Bernstein-Bézier FEM and optimal assembly algorithms. SIAM J. Sci. Comput. 33, 3087–3109 (2011)Google Scholar
  2. 2.
    Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58, 2103–2130 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ainsworth, M., Coyle, J.: Computation of Maxwell’s eigenvalues on curvilinear domains using \(hp\)-version Nédélec elements. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numer. Math. Appl., pp. 219–231. Springer, Milan (2003)Google Scholar
  4. 4.
    Andriamaro, G.: Bernstein-Bézier Techniques and Optimal Algorithms in Finite Element Analysis. PhD thesis, Strathclyde University, Glasgow, UK (2013)Google Scholar
  5. 5.
    Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198, 1660–1672 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49, 818–844 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Davis, T., Neider, J., Woo, M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.1, 2nd edn. Addison-Wesley Longman Pub (Sd) (1997)Google Scholar
  10. 10.
    Demkowicz, L.: Computing with \(hp\)-adaptive finite elements, vol. 1. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. One and Two Dimensional Elliptic and Maxwell Problems, With 1 CD-ROM (UNIX). Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  11. 11.
    Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann, San Francisco (2002)Google Scholar
  12. 12.
    Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29, 379–419 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Des. 5, 1–26 (1988)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hughes, T.J.R., Evans, J.A.: Isogeometric analysis. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 299–325. Hindustan Book Agency, New Delhi (2010)Google Scholar
  16. 16.
    Kirby, R.C., Thinh, K.T.: Fast simplicial quadrature-based finite element operators using Bernstein polynomials. Numer. Math. 121, 261–279 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations, vol. 110 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  18. 18.
    Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. COMPEL 24, 374–384 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Schumaker, L.L.: Constructive aspects of spaces of bivariate piecewise polynomials. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987), pp. 513–520. Academic Press, London (1988)Google Scholar
  21. 21.
    Schumaker, L.L.: On super splines and finite elements. SIAM J. Numer. Anal. 26, 997–1005 (1989)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Stewart, G.W.: Matrix Algorithms, vol. II: Eigensystems. Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar
  23. 23.
    Stroud, A.H.: Approximate Calculation of Multiple Integrals, Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  24. 24.
    Szabo, B., Babuska, I.: Finite Element Analysis. Wiley, New York (1991)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mark Ainsworth
    • 1
  • Gaelle Andriamaro
    • 2
  • Oleg Davydov
    • 3
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of Mathematics and StatisticsStrathclyde UniversityGlasgowScotland, UK
  3. 3.Department of MathematicsUniversity of GiessenGiessenGermany

Personalised recommendations