Constructive Approximation

, Volume 41, Issue 3, pp 495–527 | Cite as

A Review of the Sixth Painlevé Equation



For the Painlevé VI transcendents, we provide a unitary description of the critical behaviours, the connection formulae, their complete tabulation, and the asymptotic distribution of poles close to a critical point.


Painlevé equations Isomonodromy deformations Asymptotic analysis 

Mathematics Subject Classification

34M55 34M35 34M40 


  1. 1.
    Anosov, D.V., Bolibruch, A.A.: The Riemann–Hilbert Problem. Aspects of Mathematics, vol. E22. Friedr. Vieweg and Sohn, Braunschweig (1994)Google Scholar
  2. 2.
    Andreev, A.V., Kitaev, A.V.: Connection formulas for asymptotics of the fifth Painlevé transcendent on the real axis. Nonlinearity 13, 1801–1840 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Boalch, P.: From Klein to Painleve’, via Fourier, Laplace and Jimbo. Proc. Lond. Math. Soc. 90(1), 167–208 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Brezhnev, Y.V.: \(\tau \)-function solution of the Sixth Painlevé Transcendent. Theor. Math. Phys. 161(3), 1616–1633 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Nauka, Moskow, 1979; English transl., North-Holland, Amsterdam, (2000)Google Scholar
  6. 6.
    Bruno, A.D.: Asymptotic behaviour and expansion of a solution of an ordinary differential equation. Russian Math. Surv. 59, 429–480 (2004)CrossRefGoogle Scholar
  7. 7.
    Bruno, A.D., Goryuchkina, I.V.: Asymptotic expansions of solutions of the sixth Painlevé equation. Moscow Math Soc, pp 1–104, (2010)Google Scholar
  8. 8.
    Dubrovin, B.: Geometry of 2D Topological Field Theories. Lecture Notes in Math vol. 1620, pp. 120–348 (1996)Google Scholar
  9. 9.
    Dubrovin, B.: The Painlevé property, one century later. In: Conte, R. (ed.) Painlevé Transcendents in Two-Dimensional Topological Field Theory. Springer, Berlin (1999)Google Scholar
  10. 10.
    Dubrovin, B., Mazzocco, M.: Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141, 55–147 (2000)Google Scholar
  11. 11.
    Dubrovin, B., Mazzocco, M.: Canonical structure and symmetries of the Schlesinger equations. Commun. Math. Phys. 271(2), 289–373 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé Transcendents: The Riemann–Hilbert Approach. AMS, Washington, DC (2006)CrossRefGoogle Scholar
  13. 13.
    Fricke, R., Klein, F.: Vorlesungen uber die Theorie der automorphen Funktionen. I, Druck und Verlag von B.G.Teubner, Leipzig, (1897), p. 366Google Scholar
  14. 14.
    Fuchs R.: Uber lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen. Mathematische Annalen LXIII, (1907), 301–321Google Scholar
  15. 15.
    Gambier, B.: Sur des equations differentielles du second ordre et du Premier Degré dont l’Intégrale est à points critiques fixes. Acta Math. 33, 1–55 (1910)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. J. High Energy Phys. 2012(10), 38 (2012). arXiv:1207.0787
  17. 17.
    Guzzetti, D.: On the critical behaviour, the connection problem and the elliptic representation of a Painlevé 6 equation. Math. Phys. Anal. Geom. 4, 293–377 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Guzzetti, D.: The elliptic representation of the general Painlevé VI equation. Commun. Pure Appl. Math. LV, 1280–1363 (2002)Google Scholar
  19. 19.
    Guzzetti, D.: Matching procedure for the sixth Painlevé equation. J. Phys. A: Math. Gen. 39, 1197–1231 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Guzzetti, D.: The logarithmic asymptotics of the sixth Painlevé equation. J. Phys. A: Math. Theor. 41 (2008), 205201(46p)Google Scholar
  21. 21.
    Guzzetti, D.: Solving the sixth Painlevé equation: towards the classification of all the critical behaviours and the connection formulas. Int. Math. Res. Notices (2011), rnr071, 62 p. doi: 10.1093/imrn/rnr071
  22. 22.
    Guzzetti, D.: Poles distribution of PVI transcendents close to a critical point. Physica D (2012). doi: 10.1016/j.physd.2012.02.015 MathSciNetGoogle Scholar
  23. 23.
    Guzzetti, D.: Tabulation of Painlevé 6 transcendents. Nonlinearity 25, 3235–3276 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Iorgov, N., Lisovyy, O., Shchechkin, A., Tykhyy, Y.: Painlevé functions and conformal blocks. Constr. Approx. 39, 255–272 (2014)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hitchin, N.: Twistor spaces, Einstein metrics and isometric deformations. J. Differ. Geom. 42, 30–112 (1995)MATHMathSciNetGoogle Scholar
  26. 26.
    Its, A.R., Novokshenov, V.Y.: The Isomonodromic Deformation Method in the Theory of Painleve Equations. Lecture Notes in Math, vol. 1191, (1986)Google Scholar
  27. 27.
    Iwasaki, K.: An area-preserving action of the modular group on cubic surfaces of the Painlevé VI equation. Commun. Math. Phys. 242, 185–219 (2003)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painleve’. Aspects of Mathematics, vol. 16, (1991)Google Scholar
  29. 29.
    Jimbo, M.: Monodromy Problem and the Boundary Condition for Some Painlevé Trascendents. Publ. RIMS, Kyoto University, vol. 18, pp. 1137–1161 (1982)Google Scholar
  30. 30.
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (I). Physica D 2, 306 (1981)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Jimbo, M., Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (II). Physica D 2, 407–448 (1981)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Jimbo, M., Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (III). Physica D 4, 26 (1981)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Kaneko, K.: Painlevé transcendents which are meromorphic at a fixed singularity. Proc. Jpn. Acad. A 82, 71–76 (2006)CrossRefMATHGoogle Scholar
  34. 34.
    Lisovyy, O., Tykhyy, Y.: Algebraic solutions of the sixth Painleve’ equation. (2008)
  35. 35.
    Manin, Y.I.: Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of \({ P}^2\). Geometry of differential equations. Am. Math. Soc. Transl. Ser 2, 186, 131–151 (1998)Google Scholar
  36. 36.
    Mazzocco, M.: Rational solutions of the Painlevé VI equation. J. Phys. A: Math. Gen. 34, 2281–2294 (2001)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Mazzocco, M.: Irregular isomonodromic deformations for Garnier systems and Okamoto’s canonical transformations. J. Lond. Math. Soc. 70(2), 405–419 (2004)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Okamoto, K.: Studies on the Painlevé equations I, the six Painlevé equation. Ann. Math. Pura Appl. 146, 337–381 (1987)CrossRefMATHGoogle Scholar
  39. 39.
    Painlevé, P.: Sur les equations differentielles du second ordre et d’Ordre Supérieur, dont l’Intégrale Générale est uniforme. Acta Math. 25, 1–86 (1900)CrossRefGoogle Scholar
  40. 40.
    Painlevé, P.: Sur les équations différentielles du second ordre à points critiques fixes. CRAS 143, 1111–1117 (1906)Google Scholar
  41. 41.
    Picard, E.: Mémoire sur la Théorie des functions algébriques de deux variables. Journal de Liouville 5, 135–319 (1889)Google Scholar
  42. 42.
    Sato, M., Miwa, T., Jimbo, M.: Holonomic Quantum Fields. II—The Riemann–Hilbert Problem. Publ. RIMS. Kyoto. University, vol. 15, pp. 201–278 (1979)Google Scholar
  43. 43.
    Schlesinger, L.: Uber eine Klasse von Differentsial System Beliebliger Ordnung mit Festen Kritischer Punkten. J. Math. 141, 96–145 (1912)MATHGoogle Scholar
  44. 44.
    Shimomura, S.: A family of solutions of a nonlinear ordinary differential equation and its application to Painlevé equations (III), (V), (VI). J. Math. Soc. Jpn. 39, 649–662 (1987)Google Scholar
  45. 45.
    Umemura, H.: Painlevé Birational automorphism groups and differential equations. Nagoya Math. J. 119, 1–80 (1990)MATHMathSciNetGoogle Scholar
  46. 46.
    Umemura, H.: On the Irreducibility of the First Differential Equation of Painlevé. Algebraic Geometry and Commutative Algebra in honour of Masayoshi NAGATA, Kinokuniya, Tokyo, pp. 771–789 (1987)Google Scholar
  47. 47.
    Umemura, H.: Second proof of the irreducibility of the first differential equation of Painlevé. Nagoya Math. J. 117, 125–171 (1990)MATHMathSciNetGoogle Scholar
  48. 48.
    Watanabe, H.: Birational canonical transformations and classical solutions of the sixth Painlevé equation. Ann. Scuola Norm. Sup. Pisa Cl Sci. 27, 379–425 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SISSA, Intenational School of Advanced StudiesTriesteItaly

Personalised recommendations