Constructive Approximation

, Volume 41, Issue 1, pp 93–112 | Cite as

Well-Separated Spherical Designs

  • Andriy Bondarenko
  • Danylo Radchenko
  • Maryna Viazovska


For each \(N\ge C_dt^d\), we prove the existence of a well-separated spherical \(t\)-design in the sphere \(S^d\) consisting of \(N\) points, where \(C_d\) is a constant depending only on \(d\).


Spherical designs Well-separated configurations Topological degree Marcinkiewicz–Zygmund inequality Area-regular partitions 

Mathematics Subject Classification

52C35 41A55 41A05 41A63 



The authors thank the Mathematisches Forschungsinstitut Oberwolfach for their hospitality during the preparation of this manuscript and for providing a stimulating atmosphere for research. This paper is partially supported by the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo and grant MTM2011-27637.


  1. 1.
    Alexander, R.: On the sum of distances between \(n\) points on a sphere. Acta Mathematica Hungarica 23, 443–448 (1972)CrossRefzbMATHGoogle Scholar
  2. 2.
    An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Well conditioned spherical designs for integration and interpolation on the two-sphere. SIAM J. Numer. Anal. 48, 2135–2157 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bajnok, B.: Construction of spherical \(t\)-designs. Geom. Dedicata 43, 167–179 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178, 443–452 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bondarenko, A., Viazovska, M.: Spherical designs via Brouwer fixed point theorem. SIAM J. Discr. Math. 24, 207–217 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Isr. J. Math. 64, 25–31 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44, 2326–2341 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discr. Comput. Geom. 15, 429–441 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hesse, K.: The \(s\)-energy of spherical designs on \(S^2\). Adv. Comput. Math. 30, 37–59 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hesse, K., Leopardi, P.: The Coulomb energy of spherical designs on \(S^2\). Adv. Comput. Math. 28, 331–354 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Korevaar, J., Meyers, J.L.H.: Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transforms Spec. Funct. 1, 105–117 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350, 523–538 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    O’Regan, D., Cho, Y.J., Chen, Y.Q.: Topological Degree Theory and Applications. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  17. 17.
    Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Seymour, P.D., Zaslavsky, T.: Averaging sets. Adv. Math. 52, 213–240 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Smale, S.: Mathematics: frontiers and perspectives, Amer. Math, Soc., Providence, pp. 271–294 (2000)Google Scholar
  20. 20.
    Wagner, G.: On averaging sets. Monatsh. Math. 111, 69–78 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andriy Bondarenko
    • 1
    • 2
  • Danylo Radchenko
    • 1
    • 3
  • Maryna Viazovska
    • 3
  1. 1.Department of Mathematical AnalysisTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Max Planck Institute for MathematicsBonnGermany

Personalised recommendations