Constructive Approximation

, Volume 39, Issue 1, pp 173–196 | Cite as

Painlevé Kernels in Hermitian Matrix Models

  • Maurice Duits


After reviewing the Hermitian one-matrix model, we will give a brief introduction to the Hermitian two-matrix model and present a summary of some recent results on the asymptotic behavior of the two-matrix model with a quartic potential. In particular, we will discuss a limiting kernel in the quartic/quadratic case that is constructed out of a 4×4 Riemann–Hilbert problem related to the Painlevé II equation. Also an open problem will be presented.


Hermitian matrix models Eigenvalue distribution Correlation kernel Critical phenomena Painlevé transcendents Biorthogonal polynomials Riemann–Hilbert problems 

Mathematics Subject Classification

30E25 60B20 82B26 15B52 30F10 31A05 42C05 



Research supported by the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation.


  1. 1.
    Adler, M., Ferrari, P., van Moerbeke, P.: Non-intersecting random walks in the neighborhood of a symmetric tacnode. Ann. Probab. (to appear). arXiv:1007.1163
  2. 2.
    Aptekarev, A., Bleher, P., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source, part II. Commun. Math. Phys. 259(2), 367–389 (2005) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bertola, M., Eynard, B.: The PDEs of biorthogonal polynomials arising in the two-matrix model. Math. Phys. Anal. Geom. 9, 162–212 (2006) MathSciNetGoogle Scholar
  4. 4.
    Bertola, M., Lee, S.Y.: First colonization of a spectral outpost in random matrix theory. Constr. Approx. 30, 225–263 (2009) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bertola, M., Tovbis, A.: Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behaviour and the first Painlevé equation. arXiv:1108.0321
  6. 6.
    Bertola, M., Eynard, B., Harnad, J.: Duality, biorthogonal polynomials and multi-matrix models. Commun. Math. Phys. 229, 73–120 (2002) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bertola, M., Eynard, B., Harnad, J.: Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann–Hilbert problem. Commun. Math. Phys. 243, 193–240 (2003) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bleher, P., Its, A.: Double scaling limit in the random matrix model: the Riemann–Hilbert approach. Commun. Pure Appl. Math. 56, 433–516 (2003) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bleher, P., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source, part III: double scaling limit. Commun. Math. Phys. 270, 481–517 (2007) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 Google Scholar
  11. 11.
    Brézin, E., Hikami, S.: Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E. 57(4), 7176–7185 (1998) CrossRefGoogle Scholar
  12. 12.
    Brézin, E., Hikami, S.: Level spacing of random matrices in an external source. Phys. Rev. E. 58(6), 4140–4149 (1998) CrossRefGoogle Scholar
  13. 13.
    Claeys, T.: Birth of a cut in unitary random matrix ensembles. Int. Math. Res. Not. 2008, rnm166 (2008). 40 pp. MathSciNetGoogle Scholar
  14. 14.
    Claeys, T., Kuijlaars, A.B.J.: Universality of the double scaling limit in random matrix models. Commun. Pure Appl. Math. 59, 1573–1603 (2006) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Claeys, T., Vanlessen, M.: Universality of a double scaling limit near singular edge points in random matrix models. Commun. Math. Phys. 273, 499–532 (2007) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Claeys, T., Its, A., Krasovsky, I.: Higher order analogues of the Tracy-Widom distribution and the Painlevé II hierarchy. Commun. Pure Appl. Math. 63, 362–412 (2010) MATHMathSciNetGoogle Scholar
  17. 17.
    Daul, J.M., Kazakov, V., Kostov, I.K.: Rational theories of 2D gravity from the two-matrix model. Nucl. Phys. B 409, 311–338 (1993) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. Amer. Math. Soc., Providence (1999) Google Scholar
  19. 19.
    Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics for polynomials orthogonal with respect to varying exponential weights. Commun. Pure Appl. Math. 52, 1491–1552 (1999) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Delvaux, S., Kuijlaars, A.B.J., Zhang, L.: Critical behavior of non-intersecting Brownian motions at a tacnode. Commun. Pure Appl. Math. 64, 1305–1383 (2011) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Duits, M., Geudens, D.: A critical phenomenon in the two matrix model in the quartic/quadratic case. Duke Math. J. (to appear) Google Scholar
  23. 23.
    Duits, M., Kuijilaars, A.B.J.: Painlevé I asymptotic for orthogonal polynomials with respect to a varying quartic weight. Nonlinearity 19, 2211–2245 (2006) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Duits, M., Kuijlaars, A.B.J.: Universality in the two-matrix model: a Riemann–Hilbert steepest descent analysis. Commun. Pure Appl. Math. 62, 1076–1153 (2009) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Duits, M., Geudens, D., Kuijlaars, A.B.J.: A vector equilibrium problem for the two-matrix model in the quartic/quadratic case. Nonlinearity 24(3), 951–993 (2011) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Duits, M., Kuijlaars, A.B.J., Mo, M.Y.: The Hermitian two-matrix model with an even quartic potential. Mem. Am. Math. Soc. 217(1022), 105 (2012) MathSciNetGoogle Scholar
  27. 27.
    Duits, M., Kuijlaars, A.B.J., Mo, M.Y.: Asymptotic analysis of the two matrix model with a quartic potential. arXiv:1210.0097
  28. 28.
    Ercolani, N.M., McLaughlin, K.T.-R.: Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model. Physica D 152/153, 232–268 (2001) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Eynard, B.: Large-N expansion of the 2 matrix model. J. High Energy Phys. 1, 051 (2003), 38 p. CrossRefMathSciNetGoogle Scholar
  30. 30.
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain: eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Flaschka, H., Newell, A.C.: Monodromy and spectrum-preserving deformations I. Commun. Math. Phys. 76, 65–116 (1980) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147, 395–430 (1992) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents: A Riemann–Hilbert Approach. Mathematical Surveys and Monographs, vol. 128. Amer. Math. Soc., Providence (2006) CrossRefGoogle Scholar
  34. 34.
    Geudens, D., Zhang, L.: Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel. arXiv:1208.0762
  35. 35.
    Guionnet, A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244, 527–569 (2004) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Hardy, A., Kuijlaars, A.B.J.: Weakly admissible vector equilibrium problems. J. Approx. Theory 164, 854–868 (2012) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006) CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998) CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Johansson, K.: Random Matrices and Determinantal Processes. Mathematical Statistical Physics, pp. 1–55. Elsevier, Amsterdam (2006) Google Scholar
  41. 41.
    Johansson, K.: Non-colliding Brownian Motions and the extended tacnode process. Commun. Math. Phys. (to appear) Google Scholar
  42. 42.
    Kapaev, A.A.: Riemann–Hilbert problem for bi-orthogonal polynomials. J. Phys. A 36, 4629–4640 (2003) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005) CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Kuijlaars, A.B.J.: Universality. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix Theory. Oxford University Press, Oxford (2011) Google Scholar
  45. 45.
    Kuijlaars, A.B.J., McLaughlin, K.T.-R.: A Riemann–Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178, 313–320 (2005) CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Lubinsky, D.S.: Some recent methods for establishing universality limits. Nonlinear Anal. 71, e2750–e2765 (2009) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Lyons, R.: Determinantal probability measures. Publ. Math. IHÉS 98, 167–212 (2003) CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    McLaughlin, K.T.-R., Miller, P.D.: The \(\bar{\partial}\) steepest descent method for orthogonal polynomials on the real line with vary in weights. Int. Math. Res. Not. 2008, rnn075 (2008), 66 pp. MathSciNetGoogle Scholar
  49. 49.
    Mo, M.Y.: The Riemann–Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition. Int. Math. Res. Not. 2008, rnm042 (2008), 51 pp. Google Scholar
  50. 50.
    Mo, M.Y.: Universality in the two matrix model with a monomial quartic and a general even polynomial potential. Commun. Math. Phys. 291, 863–894 (2009) CrossRefMATHGoogle Scholar
  51. 51.
    Okounkov, A., Reshetikhin, N.: Random skew plane partitions and the Pearcey process. Commun. Math. Phys. 269(3), 571–609 (2007) CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Orantin, N.: Chain of matrices, loop equations, and topological recursion. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix Theory. Oxford University Press, Oxford (2011) Google Scholar
  53. 53.
    Pastur, L., Shcherbina, M.: Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130, 205–250 (2008) CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Saff, E.B., Totik, V.: Logarithmic Potentials with External Field. Grundlehren der Mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997) CrossRefGoogle Scholar
  55. 55.
    Shcherbina, M.: Double scaling limit for matrix models with non analytic potentials. J. Math. Phys. 49, 033401 (2008). 34 pp. MathSciNetGoogle Scholar
  56. 56.
    Soshnikov, A.: Determinantal random point fields. Usp. Mat. Nauk 55(5(335)), 107–160 (2000). Translation in Russ. Math. Surv. 55(5), 923–975 (2000) CrossRefMathSciNetGoogle Scholar
  57. 57.
    Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381–400 (2006) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations