Constructive Approximation

, Volume 38, Issue 2, pp 213–234 | Cite as

On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection

  • Michael Karkulik
  • David Pavlicek
  • Dirk Praetorius


Newest vertex bisection (NVB) is a popular local mesh-refinement strategy for regular triangulations that consist of simplices. For the 2D case, we prove that the mesh-closure step of NVB, which preserves regularity of the triangulation, is quasi-optimal and that the corresponding L2-projection onto lowest-order Courant finite elements (P1-FEM) is always H1-stable. Throughout, no additional assumptions on the initial triangulation are imposed. Our analysis thus improves results of Binev et al. (Numer. Math. 97(2):219–268, 2004), Carstensen (Constr. Approx. 20(4):549–564, 2004), and Stevenson (Math. Comput. 77(261):227–241, 2008) in the sense that all assumptions of their theorems are removed. Consequently, our results relax the requirements under which adaptive finite element schemes can be mathematically guaranteed to convergence with quasi-optimal rates.


Adaptive finite element methods Regular triangulations Newest vertex bisection L2-Projection H1-Stability 

Mathematics Subject Classification

65N30 65N50 65Y20 


  1. 1.
    Agouzal, A., Thomas, J.-M.: Une méthode d’éléments finis hybrides en décomposition de domaines. RAIRO, Modél. Math. Anal. Numér. 29(6), 749–764 (1995) MathSciNetMATHGoogle Scholar
  2. 2.
    Aksoylu, B., Holst, M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each H 1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \(\mathbb{R}^{d}\). ESAIM: M2AN (2013, accepted for publication) Google Scholar
  4. 4.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bramble, J.H., Xu, J.: Some estimates for a weighted L 2 projection. Math. Comput. 56(194), 463–476 (1991) MathSciNetMATHGoogle Scholar
  6. 6.
    Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the L 2 projection in H 1(Ω). Math. Comput. 71(237), 147–156 (2002) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carstensen, C.: Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for H 1-stability of the L 2-projection onto finite element spaces. Math. Comput. 71(237), 157–163 (2002) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Carstensen, C.: An adaptive mesh-refining algorithm allowing for an H 1 stable L 2 projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Clément, P.: Approximation by finite element functions using local regularization. RAIRO. Anal. Numér. 9(R-2), 77–84 (1975) MATHGoogle Scholar
  11. 11.
    Crouzeix, M., Thomée, V.: The stability in L p and \(W^{1}_{p}\) of the L 2-projection onto finite element function spaces. Math. Comput. 48(178), 521–532 (1987) MATHGoogle Scholar
  12. 12.
    Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors. Numer. Math. 117(2), 185–218 (2011) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32(3), 706–740 (1995) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Feischl, M., Karkulik, M., Melenk, M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive boundary element method. SIAM J. Numer. Anal. 51(2), 1327–1348 (2013) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Karkulik, M., Of, G., Praetorius, D.: Convergence of adaptive 3D-BEM for weakly singular integral equations based on isotropic mesh refinement. Numer. Methods Partial Differ. Equ. (2012, accepted for publication) Google Scholar
  16. 16.
    Karkulik, M., Pavlicek, D., Praetorius, D.: On 2D newest vertex bisection: Optimality of mesh-closure and H 1-stability of L 2-projection. ASC report 10/2012, Vienna University of Technology (2012). arXiv:1210.0367
  17. 17.
    Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55(3), 275–288 (1994) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210–227 (1995) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mitchell, W.F.: Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comput. Appl. Math. 36(1), 65–78 (1991) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000) (electronic) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME Lectures (2011) Google Scholar
  22. 22.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009) CrossRefGoogle Scholar
  23. 23.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994) MATHGoogle Scholar
  24. 24.
    Schulz, H., Steinbach, O.: A new a posteriori error estimator in adaptive direct boundary element methods. The Neumann problem. In: Multifield Problems, pp. 201–208. Springer, Berlin (2000) CrossRefGoogle Scholar
  25. 25.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. thesis, Purdue University (1972) Google Scholar
  27. 27.
    Steinbach, O.: On a hybrid boundary element method. Numer. Math. 84(4), 679–695 (2000) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Steinbach, O.: On the stability of the L 2 projection in fractional Sobolev spaces. Numer. Math. 88(2), 367–379 (2001) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9(1–2), 191–216 (1998). Numerical treatment of boundary integral equations MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Traxler, C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tsogtgerel, G.: Adaptive boundary element methods with convergence rates. Numer. Math. (2012, accepted for publication) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael Karkulik
    • 1
  • David Pavlicek
    • 2
  • Dirk Praetorius
    • 2
  1. 1.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations