Advertisement

Constructive Approximation

, Volume 39, Issue 1, pp 85–99 | Cite as

Distributions of Poles to Painlevé Transcendents via Padé Approximations

  • V. Y. NovokshenovEmail author
Article

Abstract

A version of the Fair–Luke algorithm has been used to find the Padé approximate solutions to the Painlevé I, II, and IV equations. The distributions of poles in the complex plane are studied to check the dynamics of movable poles and the emergence of rational and truncated solutions, as well as various patterns formed by the poles. The high-order approximations allow us to check asymptotic expansions at infinity and estimate the range of asymptotic domains. The Coulomb gas interpretation of the pole ensembles is discussed in view of the patterns arising in Painlevé IV transcendents.

Keywords

Painlevé equations Meromorphic solutions Distribution of poles Padé approximations Continued fractions Riemann–Hilbert problem Stieltjes relations Coulomb gas 

Mathematics Subject Classification (2000)

30D35 30E10 33E17 34M55 34M60 41A21 

References

  1. 1.
    Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg–de Vries equation. Stud. Appl. Math. 57(1), 13–44 (1977) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bertola, M.: On the location of poles for the Ablowitz–Segur family of solutions to the second Painlevé equation. Nonlinearity 25, 1179–1185 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonitz, M., et al.: Classical and quantum Coulomb crystals. Phys. Plasmas 15, 055704 (2008) CrossRefGoogle Scholar
  4. 4.
    Boutroux, P.: Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du seconde ordre. Ann. Sci. Éc. Norm. Super. 30, 265–375 (1913); Ann. Sci. Éc. Norm. Super. 31, 99–159 (1914) MathSciNetGoogle Scholar
  5. 5.
    Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19, 57–94 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fair, W., Luke, Y.: Rational approximations to the solution of the second order Riccati equation. Math. Comput. 20, 602–605 (1968) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Yu.: Painlevé Transcendents. The Riemann–Hilbert Approach. Math. Surveys and Monographs, vol. 128. Am. Math. Soc., Providence (2006) CrossRefzbMATHGoogle Scholar
  8. 8.
    Fornberg, B., Weideman, J.A.C.: A numerical methodology for the Painlevé equations. J. Comput. Phys. 230, 5957–5973 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Forrester, P.J.: Log-Gases and Random Matrices. London Math. Soc. Monographs, vol. 34. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar
  10. 10.
    Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Equations in the Complex Plane. De Gruyter Studies in Mathematics, vol. 28. Walter de Gruyter, Berlin (2002) CrossRefzbMATHGoogle Scholar
  11. 11.
    Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51(10), 1186–1194 (2004) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Jones, W., Thron, W.: Continued fractions in numerical analysis. In: Brezinski, C. (ed.) Continued Fractions and Padé Approximant. North-Holland, Amsterdam (1990) Google Scholar
  14. 14.
    Joshi, N., Kitaev, A.V.: On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253–291 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kapaev, A., Kitaev, A.: Connection formulas for the first Painlevé transcendent in the complex plane. Lett. Math. Phys. 27, 243–252 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kapaev, A.A.: Scaling limits in the forth Painlevé transcendent. POMI Preprint 15 (1996) Google Scholar
  17. 17.
    Marikhin, V.G., Shabat, A.B., Boiti, M., Pempinelli, F.: Self-similar solutions of NLS-type dynamical systems. J. Exp. Theor. Phys. 117(3), 634–643 (2000) MathSciNetGoogle Scholar
  18. 18.
    Novokshenov, V.Yu.: Padé approximations of Painlevé I and II transcendents. Theor. Math. Phys. 159(3), 852–861 (2009) MathSciNetGoogle Scholar
  19. 19.
    Novokshenov, V.Yu.: Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR, Ser. Mat. 54, 1229–1251 (1990) zbMATHGoogle Scholar
  20. 20.
    Nuttall, J.: The convergence of Padé approximants of meromorphic functions. J. Math. Anal. Appl. 31, 129–140 (1970) MathSciNetGoogle Scholar
  21. 21.
    Olver, S.: A Mathematica package for computing solutions to matrix-valued Riemann–Hilbert problems. http://www.comlab.ox.ac.uk/people/sheehan.olver/projects/RHPackage.html
  22. 22.
    Painlevé, P.: Sur les équations differentielles du second ordre et d’ordre supérieur, dont l’intégrale générale est uniforme. Acta Math. 25, 1–86 (1902) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Saff, E.B.: Logarithmic potential theory with applications to approximation theory. Surv. Approx. Theory 5, 165–200 (2010) MathSciNetGoogle Scholar
  24. 24.
    Stieltjes, T.J.: Sur certains polynomes qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lame. Acta Math. 6(1), 321–326 (1885) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Yablonskii, A.I.: On rational solutions of the second Painlevé equation. Vesti Akad. Nauk BSSR, Ser. Fiz. Tekh. Nauk 3, 30–35 (1959) Google Scholar
  27. 27.
    Vorob’ev, A.P.: On the rational solutions of the second Painlevé equation. Differ. Equ. 1, 79–81 (1965) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Mathematics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations