Advertisement

Constructive Approximation

, Volume 32, Issue 3, pp 569–596 | Cite as

Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations

  • Philipp GrohsEmail author
Article

Abstract

Linear subdivision schemes can be adapted in various ways so as to operate in nonlinear geometries such as Lie groups or Riemannian manifolds. It is well known that along with a linear subdivision scheme a multiscale transformation is defined. Such transformations can also be defined in a nonlinear setting. We show the stability of such nonlinear multiscale transforms. To do this we introduce a new kind of proximity condition which bounds the difference of the differential of a nonlinear subdivision scheme and a linear one. It turns out that—unlike the generic nonlinear case and modulo some minor technical assumptions—in the manifold-valued setting, convergence implies stability of the nonlinear subdivision scheme and associated nonlinear multiscale transformations.

Keywords

Lipschitz Interpolatory wavelet transform Manifold-valued data Nonlinear subdivision 

Mathematics Subject Classification (2000)

41AXX 41A25 53B 22E 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amat, S., Liandrat, J.: On the stability of PPH nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18(2), 198–206 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of non linear subdivision schemes and associated multi-resolution transforms. Arxiv preprint arXiv:0810.1146 (2008)
  3. 3.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. American Mathematical Society, Providence (1991) Google Scholar
  4. 4.
    Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2001) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dadourian, K.: Schemas de subdivision, analyses multiresolutions non-lineaires applications. Ph.D. thesis, Université de Provence (2008) Google Scholar
  6. 6.
    Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20(3), 399–463 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ditzian, Z.: Moduli of smoothness using discrete data. J. Approx. Theory 49(2), 115–129 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992) zbMATHGoogle Scholar
  9. 9.
    Donoho, D.L.: Interpolating wavelet transforms. Tech. report, 1992, available from http://citeseer.ist.psu.edu/donoho92interpolating.html
  10. 10.
    Donoho, D.L.: Smooth wavelet decompositions with blocky coefficient kernels. In: Recent Advances in Wavelet Analysis, pp. 259–308. Academic Press, New York (1993) Google Scholar
  11. 11.
    Donoho, D.L., Yu, T.P.-Y.: Nonlinear pyramid transforms based on median-interpolation. SIAM J. Math. Anal. 31(5), 1030–1061 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2003) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dyn, N., Grohs, P., Wallner, J.: Approximation order of interpolatory nonlinear subdivision schemes. J. Comput. Appl. Math. (2009), to appear Google Scholar
  14. 14.
    Faber, G.: Über stetige Funktionen. Math. Ann. 66(1), 81–94 (1908) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Grohs, P.: Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal. 46, 2169–2182 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Grohs, P.: Approximation order from stability of nonlinear subdivision schemes. J. Approx. Theory (2010), to appear Google Scholar
  17. 17.
    Grohs, P.: Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113(3), 163–180 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Grohs, P.: Smoothness of interpolatory multivariate subdivision in Lie groups. IMA J. Numer. Math. 29(3), 760–772 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27, 325–333 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Harizanov, S., Oswald, P.: Stability of nonlinear subdivision and multiscale transforms. Constr. Approx. (2009), accepted Google Scholar
  21. 21.
    Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R.: Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2(3–5), 347–378 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kutyniok, G., Sauer, T.: Adaptive directional subdivision schemes and shearlet multiresolution analysis. SIAM J. Math. Anal. 41, 1436–1471 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Micchelli, C.A.: Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995) zbMATHGoogle Scholar
  24. 24.
    Runborg, O.: Introduction to normal multiresolution approximation. In: Classification, Clustering, and Data Mining Applications, Proceedings of the Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15–18 July 2004, p. 205. Springer, Berlin (2004) Google Scholar
  25. 25.
    Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) Google Scholar
  27. 27.
    Ur Rahman, I., Drori, I., Stodden, V.C., Donoho, D.L., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24(3), 289–318 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Xie, G., Yu, T.P.-Y.: Approximation order equivalence properties of manifold-valued data subdivision schemes. Manuscript, submitted for publication, April 2008 Google Scholar
  31. 31.
    Xie, G., Yu, T.P.-Y.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Modeling and Simulation 7(3), 1073–1100 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Xie, G., Yu, T.P.-Y.: Smoothness equivalence properties of interpolatory Lie group subdivision schemes. IMA J. Numer. Anal. (2008), to appear Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of GeometryTU GrazGrazAustria

Personalised recommendations