Constructive Approximation

, Volume 23, Issue 2, pp 197–210

Positive Gegenbauer Polynomial Sums and Applications to Starlike Functions



Let $s_n(f,z):=\sum_{k=0}^{n}a_kz^k$ be the $n$th partial sum of $f(z)=\sum_{k=0}^{\infty{}}a_kz^k$. We show that $\RE s_n(f/z,z)>0$ holds for all\ $z\in\D,\ n\in\N$, and all starlike functions $f$ of order $\lambda$ iff $\lambda_0\leq\lambda<1$ where $\lambda_0=0.654222...$ is the unique solution $\lambda\in(\frac{1}{2},1)$ of the equation $\int_{0}^{3\pi/2}t^{1-2\lambda}\cos t \,dt=0$. Here $\D$ denotes the unit disk in the complex plane $\C$. This result is the best possible with respect to $\lambda_0$. In particular, it shows that for the Gegenbauer polynomials $C_{n}^{\mu}(x)$ we have $\sum_{k=0}^n C_{k}^{\mu}(x)\cos k \theta>0$ for all $n\in\N,\ x\in[-1,1]$, and $0<\mu\leq\mu_0:=1-\lambda_0=0.345778...$. This result complements an inequality of Brown, Wang, and Wilson (1993) and extends a result of Ruscheweyh and Salinas (2000).

Positive cosine sums Trigonometric inequalities Gegenbauer polynomials Starlike functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, The University of Cyprus, P.O. Box 20537, 1678 NicosiaCyprus
  2. 2.Mathematisches Institut, Universitat Wurzburg, 97074 WurzburgGermany

Personalised recommendations