Constructive Approximation

, Volume 18, Issue 4, pp 479–502 | Cite as

Summation and transformation formulas for elliptic hypergeometric series

  • S. O. WarnaarEmail author


Using matrix inversion and determinant evaluation techniques we prove several summation and transformation formulas for terminating, balanced, very-well-poised, elliptic hypergeometric series.

AMS classification

33D15 33D67 33E05 05A30 

Key words and phrases

Elliptic functions Elliptic hypergeometric series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Andrews, D. W. Stanton (1998): Determinants in plane partition enumeration. European J. Combin., 19:273–282.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. N. Bailey (1929): An identity involving Heine’s basic hypergeometric series. I. London. Math. Soc., 4:254–257.MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. J. Baxter (1973): Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type model. Ann. Physics, 76:25–47.CrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Bhatnagar, S. C. Milne (1997): Generalized bibasic hypergeometric series and their U(n) extensions. Adv. in Math., 131:188–252.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Bhatnagar, M. Schlosser (1998): Cnand Dnvery-well-poised 10Φ9 transformations. Constr. Approx., 14:531–567.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. M. Bressoud (1988): The Bailey lattice: An introduction. In: Ramanujan Revisited (G. E. Andrews et al., eds.). New York: Academic Press, pp. 57–67.Google Scholar
  7. 7.
    W. Chu (1994): Inversion techniques and combinatorial identities —Strange evaluations of basic hypergeometric series. Compositio Math., 91:121–144.zbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Chu (1995): Inversion techniques and combinatorial identities —Jackson’s q-analogue of the Dougall-Dixon theorem and the dual formulae. Compositio Math., 95:43–68.zbMATHMathSciNetGoogle Scholar
  9. 9.
    E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado (1988): Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities. In: Conformal Field Theory and Solvable Lattice Models. Advances in Studies in Pure Mathematics, Vol. 16. Boston: Academic Press, pp. 17–122.Google Scholar
  10. 10.
    R. Y. Denis, R. A. Gustafson (1992): An SU(n) q-beta integral transformation and multiple hypergeometric series identities. SIAM J. Math. Anal., 23:552–561.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. F. van Diejen (1997): On certain multiple Bailey, Rogers and Dougall-type summation formulas. Publ. Res. Inst. Math. Sci., 33:483–508.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G. Felder, A. Varchenko (2000): The elliptic gamma function and SL(3, Z) × Z3. Adv. in Math., 156:44–76.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    I. B. Frenkel, V. G. Turaev (1997): Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. The Arnold-Gelfand Mathematical Seminars. Boston, MA: Birkhäuser, pp. 171–204.Google Scholar
  14. 14.
    G. Gasper (1989): Summation, transformation, and expansion formulas for bibasic series. Trans. Amer. Math. Soc., 312:257–277.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Gasper, M. Rahman (1990): Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35. Cambridge: Cambridge University Press.Google Scholar
  16. 16.
    G. Gasper, M. Rahman (1990): An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas. Canad. J. Math., 42:1–27.zbMATHMathSciNetGoogle Scholar
  17. 17.
    I. Gessel, D. Stanton (1983): Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc, 277:173–201.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    I. Gessel, D. Stanton (1986): Another family of q-Lagrange inversion formulas. Rocky Mountain J. Math., 16:373–384.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. A. Gustafson,C. Krattenthaler (1997): Determinant evaluations and U(n) extensions of Heine’s 2Φ1-transformations. In: Special Functions, q-Series and Related Topics (M. E. H. Ismail et al. eds.). Fields Inst. Commun., Vol. 14. Providence, RI: American Mathematical Society, pp. 83–89.Google Scholar
  20. 20.
    F. H. Jackson (1921): Summation of q-hypergeometric series. Messenger Math., 50:101–112.Google Scholar
  21. 21.
    C. Krattenthaler (1995): The major counting of nonintersecting lattice paths and generating functions for tableaux. Mem. Amer. Math. Soc., 115:no. 552.Google Scholar
  22. 22.
    C. Krattenthaler (1996): A new matrix inverse. Proc. Amer. Math. Soc., 124:47–59.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    C. Krattenthaler (1999): Advanced Determinant Calculus. Sém. Lothar. Combin., Vol. 42, Art. B42q, 41pp.Google Scholar
  24. 24.
    I. G. Macdonald (1995): Symmetric Functions and Hall Polynomials, 2nd ed. New York: Oxford University Press.zbMATHGoogle Scholar
  25. 25.
    S. C. Milne (1988): Multiple q-series and U (n) generalizations of Ramanujan’s1Ψ1sum. In: Ramanujan Revisited (G. E. Andrews et al. eds.). Boston, MA: Academic Press, pp. 473–524.Google Scholar
  26. 26.
    S. C. Milne (1989): The multidimensional1Ψ1sum and Macdonald identities for A1(1). In: Theta Functions —Bowdoin 1987 (L. Ehrenpreis and R. C. Gunning, eds.). Proc. Sympos. Pure Math., Vol. 49 (Part 2). Providence, RI: American Mathematical Society, pp. 323–359.Google Scholar
  27. 27.
    S. C. Milne (1994): A q-analog of a Whipple’s transformation for hypergeometric series in U(n). Adv. in Math., 108:1–76.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. C. Milne, G. Bhatnagar (1998): A characterization of inverse relations. Discrete Math., 193:235–245.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    S. C. Milne, G. M. Lilly (1995): Consequences of the Aland ClBailey transform and Bailey lemma. Discrete Math., 139:319–346.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. C. Milne, J. W. Newcomb (1996): U(n) very-well-poised 10ϕ9 transformations. J. Comput. Appl. Math., 68:239–285.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Rahman (1993): Some quadratic and cubic summation formulas for basic hypergeometric series. Canad. J. Math., 45:394–411.zbMATHMathSciNetGoogle Scholar
  32. 32.
    J. Riordan (1979): Combinatorial Identities. Reprint of the 1968 original. Huntington: R. E. Krieger.Google Scholar
  33. 33.
    S. N. M. Ruijsenaars (1997): First-order analytic difference equations and integrable quantum systems. J. Math. Phys., 38:1069–1146.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Schlosser (1997): Multidimensional matrix inversions and Arand Drbasic hypergeometric series. Ramanujan J., 1:243–274.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    M. Schlosser (2000): Summation theorems for multidimensional basic hypergeometric series by determinant evaluations. Discrete Math., 210:151–169.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    V. Spiridonov, A. Zhedanov (2000): Classical biorthogonal rational functions on elliptic grids. C. R. Math. Rep. Acad. Sci. Canada, 22:70–76.zbMATHMathSciNetGoogle Scholar
  37. 37.
    E. T. Whittaker, G. N. Watson (1996): A Course of Modern Analysis. Reprint of the fourth (1927) edition. Cambridge: Cambridge University Press.Google Scholar
  38. 38.
    J. A. Wilson (1991): Orthogonal functions from Gram determinants. SIAM J. Math. Anal., 22:1147–1155.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  1. 1.Instituut voor Theoretische FysicaUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations