Statistical Papers

, Volume 59, Issue 4, pp 1425–1439 | Cite as

Excess of locally D-optimal designs for Cobb–Douglas model

  • Yu. D. Grigoriev
  • V. B. Melas
  • P. V. ShpilevEmail author
Regular Article


In this paper we study the problem of homothety’s influence on the number of optimal design support points under fixed values of a regression model’s parameters. The Cobb–Douglas two-dimensional nonlinear in parameters model used in microeconomics is considered. There exist two types of optimal designs: saturated (i.e. design with the number support points equal to the number of parameters) and excess design (i.e. design with greater number of support points). The optimal designs with the minimal number of support points are constructed explicitly. Numerical methods for constructing designs with greater number of points are used.


Excess design Locally D-optimal designs Homothetic transformation Cobb–Douglas model 


  1. Atkinson AC, Donev AN, Khuri AI, Mukerjee B, Sinha BK, Tobias RD (2007) Optimum experimental design, with SAS. Oxford University Press, OxfordGoogle Scholar
  2. Berger M, Pansu P, Berry J-P, Saint-Raymond X (1984) Problems in geometry. Springer, New YorkCrossRefGoogle Scholar
  3. Chaloner K, Larntz K (1989) Optimal bayesian experimental design applied to logistic regression experiments. J Stat Plan Inference 21:191–208CrossRefGoogle Scholar
  4. de la Garza A (1954) Spacing of information in polynomial regression. Ann Math Stat 25:123–130MathSciNetCrossRefGoogle Scholar
  5. Dette H, Melas B (2011) A note on the de la Garza phenomenon for locally optimal designs. Ann Stat 39(2):1266–1281MathSciNetCrossRefGoogle Scholar
  6. Douglas PH (1976) The Cobb-Douglas production function once again: its history, its testing, and some new empirical values. J Polit Econ 84(5):903–916CrossRefGoogle Scholar
  7. Ermakov SM, Kulikov DV, Leora SN (2017) Towards the analysis of the simulated annealing method in the multiextremal case. Vestn St. Petersbg Univ 50(2):132–137CrossRefGoogle Scholar
  8. Fedorov VV (1972) Theory of optimal experiment. Academic Press, New YorkGoogle Scholar
  9. Filipe J, Adams FG (2005) The estimation of the Cobb-Douglas function: a retrospective view. East Econ J 31(3):427–44Google Scholar
  10. Grigoriev YuD, Denisov VI (1973) The solution of a nonlinear problem of experimental regression analysis [in Russian]. The computer applying in planning and designing, collection of proceedings, Novosibirsk electrotechnical Institute, NovosibirskGoogle Scholar
  11. Grigoriev YuD, Melas VB, Shpilev PV (2017) Excess of locally \(D\)-optimal designs and homothetic transformations. Vestn St. Petersb Univ 50(4):329–336CrossRefGoogle Scholar
  12. Heady EO, Dillon JL (1961) Agricultural production functions. Iowa State University Press, AmesGoogle Scholar
  13. Khuri AI, Mukerjee B, Sinha BK, Ghosh M (2006) Design issues for generalized linear models: a review. Stat Sci 21(3):376–399MathSciNetCrossRefGoogle Scholar
  14. Melas VB (2006) Functional approach to optimal experimental design. Springer, New YorkzbMATHGoogle Scholar
  15. Pukelsheim F (2006) Optimal design of experiments. SIAM, PhiladelphiaCrossRefGoogle Scholar
  16. Whittle P (1973) Some general points in the theory of optimal experimental design. J R Stat Soc Ser B 35:123–130MathSciNetzbMATHGoogle Scholar
  17. Yang M (2010) On the de la Garza phenomenon. Ann Stat 38:2499–2524MathSciNetCrossRefGoogle Scholar
  18. Yang M, Stufken J (2009) Support points of locally optimal designs for nonlinear models with two parameters. Ann Stat 37:518–541MathSciNetCrossRefGoogle Scholar
  19. Yang M, Stufken J (2012) Identifying locally optimal designs for nonlinear models: a simple extension with profound consequences. Ann Stat 40(3):1665–1681MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia
  2. 2.Faculty of Mathematics & MechanicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations