Wild bootstrap tests for autocorrelation in vector autoregressive models

Abstract

Tests for error autocorrelation (AC) are derived under the assumption of independent and identically distributed errors. The tests are not asymptotically valid if the errors are conditionally heteroskedastic. In this article we propose wild bootstrap (WB) Lagrange multiplier tests for error AC in vector autoregressive (VAR) models. We show that the WB tests are asymptotically valid under conditional heteroskedasticity of unknown form. WB tests based on a version of the heteroskedasticity-consistent covariance matrix estimator are found to have the smallest error in rejection probability under the null and high power under the alternative. We apply the tests to VAR models for credit default swap prices and Euribor interest rates. An important result that we find is that the WB tests lead to parsimonious models while the asymptotic tests suggest that a long lag length is required to get white noise residuals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahlgren N, Antell J (2008) Bootstrap and fast double bootstrap tests of cointegration rank with financial time series. Comput Stat Data Anal 52:4754–4767

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahlgren N, Catani P (2014a) Tests of cointegration rank with strong persistence in volatility: an application to the pricing of risk in the long run. In: Knif J, Pape B (eds) Contributions to mathematics, statistics, econometrics, and finance: essays in honour of Professor Seppo Pynnönen. Acta Wasaensia 296. University of Vaasa, Vaasa, pp 153–169

    Google Scholar 

  3. Ahlgren N, Catani P (2014b) Finite-sample multivariate tests for ARCH in vector autoregressive models. In: Gilli M, Gonzalez-Rodriguez G, Nieto-Reyes A (eds) Proceedings of COMPSTAT 2014. Université de Genéve, Genéve, pp 265–272

  4. Baltagi BH, Kao C, Na S (2013) Testing for cross-sectional dependence in a panel factor model using the wild bootstrap \(F\) test. Stat Pap 54:1067–1094

    Article  MATH  MathSciNet  Google Scholar 

  5. Benkwitz A, Lütkepohl H, Wolters J (2001) Comparison of bootstrap confidence intervals for impulse responses of German monetary systems. Macroecon Dyn 5:81–100

    Article  MATH  Google Scholar 

  6. Bera AK, Higgins ML, Lee S (1992) Interaction between autocorrelation and conditional heteroscedasticity: a random-coefficient approach. J Bus Econ Stat 10:133–142

    Google Scholar 

  7. Blanco R, Brennan S, Marsh IW (2005) An empirical analysis of the dynamic relation between investment-grade bonds and credit default swaps. J Finance 60:2255–2281

    Article  Google Scholar 

  8. Bollerslev T (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev Econ Stat 72:498–505

    Article  Google Scholar 

  9. Breitung J, Brüggeman R, Lütkepohl H (2010) Structural vector autoregressive modeling and impulse responses. In: Lütkepohl H, Krätzig M (eds) Applied time series econometrics. Cambridge University Press, Cambridge, pp 159–196

    Google Scholar 

  10. Breusch TS (1978) Testing for autocorrelation in dynamic linear models. Aust Econ Pap 17:334–355

    Article  Google Scholar 

  11. Brüggemann R, Jentsch C, Trenkler C (2014) Inference in VARs with conditional heteroskedasticity of unknown form. University of Konstanz, Department of Economics, Working Paper 2014-13

  12. Brüggemann R, Jentsch C, Trenkler C (2015) Inference in VARs with conditional heteroskedasticity of unknown form. J Econom. (In Press)

  13. Brüggemann R, Lütkepohl H, Saikkonen P (2006) Residual autocorrelation testing for vector error correction models. J Econom 134:579–604

    Article  MATH  MathSciNet  Google Scholar 

  14. Cavaliere G, Rahbek A, Taylor AMR (2010a) Co-integration rank testing under conditional heteroskedasticity. Econom Theory 26:1719–1760

    Article  MATH  Google Scholar 

  15. Cavaliere G, Rahbek A, Taylor AMR (2010b) Testing for co-integration in vector autoregressions with non-stationary volatility. J Econom 158:7–24

    Article  MATH  MathSciNet  Google Scholar 

  16. Cavaliere G, Rahbek A, Taylor AMR (2012) Bootstrap determination of the co-integration rank in vector autoregressive models. Econometrica 80:1721–1740

    Article  MATH  MathSciNet  Google Scholar 

  17. Cavaliere G, Rahbek A, Taylor AMR (2014) Bootstrap determination of the co-integration rank in heteroskedastic VAR models. Econom Rev 33:606–650

    Article  MathSciNet  Google Scholar 

  18. Davidson J, Monticini A, Peel D (2007) Implementing the wild bootstrap using a two-point distribution. Econ Lett 96:309–315

    Article  MATH  MathSciNet  Google Scholar 

  19. Davidson R, Flachaire E (2008) The wild bootstrap, tamed at last. J Econom 146:162–169

    Article  MATH  MathSciNet  Google Scholar 

  20. Davidson R, MacKinnon JG (2006) The power of bootstrap and asymptotic tests. J Econom 133:421–441

    Article  MATH  MathSciNet  Google Scholar 

  21. Diebold FX (1986) Testing for serial correlation in the presence of ARCH. In: Proceedings of the business and economic statistics section, American Statistical Association, pp 323–328

  22. Doornik JA (1996) Testing vector error autocorrelation and heteroscedasticity. Unpublished paper, Nuffield Collage

  23. Eicker F (1963) Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann Math Stat 34:447–456

    Article  MATH  MathSciNet  Google Scholar 

  24. Edgerton D, Shukur G (1999) Testing autocorrelation in a system perspective. Econom Rev 18:343–386

    Article  MATH  MathSciNet  Google Scholar 

  25. Engle RF, Kroner KF (1995) Multivariate simultaneous generalized ARCH. Econom Theory 11:122–150

    Article  MathSciNet  Google Scholar 

  26. Godfrey LG (1978) Testing for higher order serial correlation in regression equations when the regressors include lagged dependent variables. Econometrica 46:1303–1310

    Article  MATH  Google Scholar 

  27. Godfrey LG (1991) Misspecification tests in econometrics. Cambridge University Press, Cambridge

    Google Scholar 

  28. Godfrey LG, Tremayne AR (2005) Wild bootstrap and heteroscedasticity-robut tests for serial correlation in dynamic regression models. Comput Stat Data Anal 49:377–395

    Article  MATH  Google Scholar 

  29. Gonçalves S, Kilian L (2004) Bootstrapping autoregressions with conditional heteroscedasticity of unknown form. J Econom 123:89–120

    Article  MATH  Google Scholar 

  30. Gonçalves S, Kilian L (2007) Asymptotic and bootstrap inference for AR(\(\infty \)) processes with conditional heteroskedasticity. Econom Rev 26:609–641

    Article  MATH  MathSciNet  Google Scholar 

  31. Hafner CM, Herwartz H (2000) Testing for linear autoregressive dynamics under heteroskedasticity. Econom J 3:177–197

    Article  MATH  MathSciNet  Google Scholar 

  32. Hafner CM, Herwartz H (2009) Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity. Stat Neerl 63:294–323

    Article  MathSciNet  Google Scholar 

  33. Hall AD, Anderson HM, Granger CWJ (1992) A cointegration analysis of treasury bill yields. Rev Econ Stat 74:116–126

    Article  Google Scholar 

  34. He C, Teräsvirta T (2004) An extended constant conditional correlation GARCH model and its fourth-moment structure. Econom Theory 20:904–926

    Article  MATH  MathSciNet  Google Scholar 

  35. Horowitz JL, Lobato IN, Nankervis JC, Savin NE (2006) Bootstrapping the Box-Pierce \(Q\) test: a robust test for uncorrelatedness. J Econom 133:841–862

    Article  MATH  Google Scholar 

  36. Johansen S (1996) Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, Oxford

    Google Scholar 

  37. Jouini J (2010) Bootstrap methods for single structural change tests: power versus corrected size and empirical illustration. Stat Pap 51:85–109

    Article  MATH  MathSciNet  Google Scholar 

  38. Jeantheau T (1998) Strong consistency of estimators for multivariate ARCH models. Econom Theory 14:70–86

    Article  MathSciNet  Google Scholar 

  39. Kilian L (1998a) Confidence intervals for impulse responses under departures from normality. Econom Rev 17:1–29

    Article  MATH  MathSciNet  Google Scholar 

  40. Kilian L (1998b) Small-sample confidence intervals for impulse response functions. Rev Econ Stat 80:218–230

    Article  Google Scholar 

  41. Kilian L (1999) Finite-sample properties of percentile and percentile-\(t\) bootstrap confidence intervals for impulse responses. Rev Econ Stat 81:652–660

    Article  Google Scholar 

  42. Kyriazidou E (1998) Testing for serial correlation in multivariate regression models. J Econom 86:193–220

    Article  MATH  MathSciNet  Google Scholar 

  43. Lütkepohl H (2000) Bootstrapping impulse responses in VAR analyses. In: Bethlehem JG, van der Heijden PGM (eds) Proceedings of COMPSTAT 2000. Physica-Verlag, Heidelberg

  44. Lütkepohl H (2006) New introduction to multiple time series analysis. Springer, Berlin

    Google Scholar 

  45. Lütkepohl H (2010) Vector autoregressive and vector error correction models. In: Lütkepohl H, Krätzig M (eds) Applied time series econometrics. Cambridge University Press, Cambridge, pp 86–158

    Google Scholar 

  46. Lütkepohl H (2013) Reducing confidence bands for simulated impulse responses. Stat Pap 54:1131–1145

    Article  MATH  MathSciNet  Google Scholar 

  47. Lütkepohl H, Staszewska-Bystrova A, Winker P (2015) Comparison of methods for constructing joint confidence bands for impulse response functions. Int J Forecast 31:782–798

    Article  Google Scholar 

  48. MacKinnon JG, White H (1985) Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. J Econom 29:305–325

    Article  Google Scholar 

  49. Mammen E (1993) Bootstrap and wild bootstrap for high dimensional linear models. Ann Stat 21:255–285

    Article  MATH  MathSciNet  Google Scholar 

  50. Nakatani T (2010) ccgarch: An R Package for modelling multivariate GARCH models with conditional correlations. R package version 0.2.0. http://CRAN.r-project/package=ccgarch

  51. Nakatani T, Teräsvirta T (2009) Testing for volatility interactions in the constant conditional correlation GARCH model. Econom J 12:147–163

    Article  MATH  MathSciNet  Google Scholar 

  52. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  53. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  54. Swensen AR (2006) Bootstrap algorithms for testing and determining the cointegration rank in VAR models. Econometrica 74:1699–1714

    Article  MATH  MathSciNet  Google Scholar 

  55. Swensen AR (2009) Corrigendum to ’bootstrap algorithms for testing and determining the cointegration rank in VAR models’. Econometrica 77:1703–1704

    Article  MATH  MathSciNet  Google Scholar 

  56. van Giersbergen NPA (1996) Bootstrapping the trace statistic in VAR models: Monte Carlo results and applications. Oxf Bull Econ Stat 58:391–408

    Article  Google Scholar 

  57. Whang YJ (1998) A test of autocorrelation in the presence of heteroskedasticity of unknown form. Econom Theory 14:87–122

    Article  MathSciNet  Google Scholar 

  58. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48:817–838

    Article  MATH  MathSciNet  Google Scholar 

  59. Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14:1261–1343

    Article  MATH  MathSciNet  Google Scholar 

  60. Xu KL (2008) Bootstrapping autoregression under nonstationary volatility. Econom J 11:1–26

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Editor-in-Chief, Professor Christine H. Müller, two anonymous referees, and Pentti Saikkonen and Timo Teräsvirta.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Catani.

Appendix

Appendix

Proof of Proposition 1 To prove the asymptotic validity of the recursive-design WB \(Q_{ \text {LM}}^{*}\) test, we need to show that \(\sqrt{T} \text{ vec }(\widehat{\mathbf {B}}-\mathbf {B})\) and \(\sqrt{T}\text{ vec }( \widehat{\mathbf {B}}^{*}-\widehat{\mathbf {B}})\) have the same asymptotic multivariate normal distribution, \(\sqrt{T}\mathbf {c}_{h}\) and \(\sqrt{T} \mathbf {c}_{h}^{*}\) have the same asymptotic multivariate normal distribution, and

$$\begin{aligned} \text{ plim }\frac{1}{T}\mathbf {ZF}(\mathbf {I}_{h}\otimes \mathbf {U}^{\prime })=\text{ plim }\frac{1}{T}\mathbf {Z}^{*}\mathbf {F}(\mathbf {I}_{h}\otimes \mathbf {U}^{*\prime })=\widetilde{\mathbf {G}}, \end{aligned}$$
(15)

where \(\widetilde{\mathbf {G}}\) is defined in (10).

To show that \(\sqrt{T}\text{ vec }(\widehat{\mathbf {B}}-\mathbf {B})\) and \( \sqrt{T}\text{ vec }(\widehat{\mathbf {B}}^{*}-\widehat{\mathbf {B}})\) have the same asymptotic multivariate normal distribution, we use Theorem 5.1 of Brüggemann et al. (2014). Brüggemann et al. prove consistency of the moving block bootstrap in vector autoregressive models with conditionally heteroscedastric errors. Their result also holds for the WB estimates of the mean parameters \(\mathbf {B}\) (see Brüggemann et al. 2014, p. 8). Hence, we can conclude that

$$\begin{aligned} \sup _{\mathbf {z}}\left| \text{ P }\left( \sqrt{T}\text{ vec }(\widehat{ \mathbf {B}}-\mathbf {B})\le \mathbf {z}\right) -\text{ P }^{*}\left( \sqrt{T }\text{ vec }(\widehat{\mathbf {B}}^{*}-\widehat{\mathbf {B}})\le \mathbf {z} \right) \right| \rightarrow \mathbf {0} \end{aligned}$$

in probability.

The asymptotic multivariate normal distribution of \(\sqrt{T}\mathbf {c}_{h}\) is obtained from Lemma A.1 of Brüggemann et al. (2014):

$$\begin{aligned} \sqrt{T}\mathbf {c}_{h}\overset{D}{\rightarrow }\text{ N }(\mathbf {0}, \varvec{\Omega }_{h}), \end{aligned}$$

where \(\varvec{\Omega }_{h}=(\tau _{0,i,0,j})\) is a \( (K^{2}h\times K^{2}h)\) block matrix and \(\tau _{0,i,0,j}\) is defined in (3). The proof that \(\sqrt{T}\mathbf {c}_{h}^{*}\) has the same asymptotic multivariate normal distribution is entirely analogous to that in the proof of Lemma A.3 of Goncalves and Kilian. Define \(S_{t}=\varvec{\mathbf {\lambda }} ^{\prime }\mathbf {c}_{h}^{*}\) for arbitrary \(\varvec{\mathbf {\lambda }}\in \mathbf {R}^{m}\), \(m=K^{2}h\), \(\varvec{\mathbf {\lambda }}^{\prime }\varvec{\mathbf {\lambda }}=1\), and apply Theorem A.1 and the techniques of the proof of Lemma A.3 of Gonçalves and Kilian (2004) to \(S_{t}\).

The result (15) follows from the multivariate analogue of Lemma A.2 of Gonçalves and Kilian (2004).

Proof of Proposition 2 The proof of Proposition 2 is similar to the proof of Proposition 1, and is omitted. The required convergence results for the fixed-design WB were proved by Hafner and Herwartz (2009).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahlgren, N., Catani, P. Wild bootstrap tests for autocorrelation in vector autoregressive models. Stat Papers 58, 1189–1216 (2017). https://doi.org/10.1007/s00362-016-0744-0

Download citation

Keywords

  • Autocorrelation
  • Conditional heteroskedasticity
  • Heteroskedasticity-consistent covariance matrix estimator
  • Lagrange multiplier test
  • Vector autoregressive model
  • Wild bootstrap

Mathematics Subject Classification

  • 62F40
  • 62M10
  • 62P20
  • 91G70