Skip to main content
Log in

A conditional count model for repeated count data and its application to GEE approach

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this article, a conditional model is proposed for modeling longitudinal count data. The joint density is disintegrated into the marginal and conditional densities according to the multiplication rule. It allows both positive and negative correlation among variables, which most multivariate count models do not possess. To show the efficiency of the proposed model for count data, we have applied to the generalized estimating equations and the inverse Fisher information matrix is compared with the covariance matrix from estimating equations. A simulation experiment is displayed and an application of the model to divorce data is presented. In addition, a comparison of conditional model and bivariate Poisson model proposed by Kocherlakota and Kocherlakota has shown using simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Arnold BC (1987) Bivariate distributions with Pareto conditionals. Stat Probab Lett 5:263–266

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold BC, Strauss D (1988) Bivariate distributions with exponential conditionals. J Am Stat Assoc 83:522–527

    Article  MathSciNet  MATH  Google Scholar 

  • Berkhout P, Plug E (2004) A bivariate Poisson count data model using conditional probabilities. StatisticaNeerlandica 58:349–364

    MathSciNet  MATH  Google Scholar 

  • Charalambides CHA, Papageorgiou H (1981) Bivariate Poisson binomial distributions. Biom J 28(5):437–450

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Rodrigues J, de Castro M (2012) The exponential COM-Poisson distribution. Stat Papers 53:653–664

    Article  MathSciNet  MATH  Google Scholar 

  • Crowder M (1995) On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 82:407–410

    Article  MATH  Google Scholar 

  • Deshmukh SR, Kasture MS (2002) Bivariate distribution with truncated Poisson marginal distributions. Commun Stat Theory Methods 31(4):527–534

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle PJ, Heagerty P, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: theory. Econometrica 52:681–700

    Article  MathSciNet  MATH  Google Scholar 

  • Health and Retirement Study (Wave [1-7]/Year [1992–2004]), Public use dataset, produced and distributed by the University of Michigan with funding from National Institute on Aging. Ann. Arbor, MI

  • Huang ML, Fung KY (1993) The D compound Poisson distribution. Stat Papers 34:319–338

    Article  MathSciNet  MATH  Google Scholar 

  • Huang ML, Fung KY (1997) On moments and cumulants of the D compound Poisson distribution. Stat Papers 38:357–361

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Johnson NL, Kotz S (1969) Distributions in statistics: discrete distributions. Wiley, New York

    MATH  Google Scholar 

  • Jung CJ, Winkelmann R (1993) Two aspects of labor mobility: a bivariate Poisson regression approach. Empir Econ 18:543–556

    Article  Google Scholar 

  • Jupp PE, Mardia KV (1980) A general correlation coefficient for directional data and related regression problems. Biometrika 67:163–173

    Article  MathSciNet  MATH  Google Scholar 

  • Kocherlakota S, Kocherlakota K (2001) Regression in the bivariate Poisson distribution. Commun Stat Theory Methods 30(5):815–825

    Article  MathSciNet  MATH  Google Scholar 

  • Kocherlatoka S, Kocherlakota K (1993) Bivariate discrete distributions. Marcel Dekker, New York

    Google Scholar 

  • Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsey JK, Lambert P (1998) On the appropriateness of marginal models for repeated measures in clinical trials. Stat Med 17:447–469

    Article  Google Scholar 

  • Masarotto G, Varin C (2012) Gaussian copula marginal regression. Electron J Stat 6:1517–1549

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P (1983) Quailikelihood function. Ann Stat 11:59–67

    Article  Google Scholar 

  • Mckenzie E (1988) Some ARMA models for dependent sequences of Poisson counts. Adv Appl Probab 20:822–835

    Article  MathSciNet  MATH  Google Scholar 

  • Minka TP, Shmueli G, Kadane JB, Borle S, Boatwright P (2003) Computing with the COM- Poisson distribution. Technical report 776, Department of Statistics, Carnegie Mellon University. http://www.stat.cmu.edu/tr/tr776/tr776.html

  • Munkin MK, Trevedi PK (1999) Simulated maximum likelihood estimation of multivariate mixed-Poisson models with applications. Econom J 2:29–48

    Article  Google Scholar 

  • Nikoloulopoulos AK (2015) Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stoch Environ Res Risk Assess:1–13 doi:10.1007/s00477-015-1060-2

  • Nikoloulopoulos AK, Joe H, Chaganty NR (2011) Weighted scores method for regression models with dependent data. Biostatistics 12:653–665

    Article  MATH  Google Scholar 

  • Park Y, Oh CW (1997) Some asymptotic properties in INAR (1) processes with Poisson marginals. Stat Papers 38:287–302

    Article  MathSciNet  MATH  Google Scholar 

  • Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway- Maxwell- Poisson distribution. Appl Stat 54:127–142

    MathSciNet  MATH  Google Scholar 

  • Song PX-K (2000) Multivariate dispersion models generated from Gaussian Copula. Scand J Stat 27:305–320

    Article  MathSciNet  MATH  Google Scholar 

  • Sutradhar BC, Das K (1999) On the efficiency of regression estimator using generalized linear models for longitudinal data. Biometrika 86:459–465

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmer DM, Trivedi PK (2006) Using trivariate copulas to model sample selection and treatment effects. J Bus Econ Stat 24(1):63–76

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the HRS (Health and Retirement Study) which is sponsored by the National Institute of Aging (Grant Number NIA U01AG09740) and conducted by the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Islam, M.A. A conditional count model for repeated count data and its application to GEE approach. Stat Papers 58, 485–504 (2017). https://doi.org/10.1007/s00362-015-0708-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0708-9

Keywords

Navigation