Statistical Papers

, Volume 54, Issue 3, pp 839–877 | Cite as

The exponentiated Weibull distribution: a survey

  • Saralees NadarajahEmail author
  • Gauss M. Cordeiro
  • Edwin M. M. Ortega
Regular Article


A review is given of the exponentiated Weibull distribution, the first generalization of the two-parameter Weibull distribution to accommodate nonmonotone hazard rates. The properties reviewed include: moments, order statistics, characterizations, generalizations and related distributions, transformations, graphical estimation, maximum likelihood estimation, Bayes estimation, other estimation, discrimination, goodness of fit tests, regression models, applications, multivariate generalizations, and computer software. Some of the results given are new and hitherto unknown. It is hoped that this review could serve as an important reference and encourage developments of further generalizations of the two-parameter Weibull distribution.


Estimation Exponentiated Weibull distribution Moments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-Elfattah AM (2011) Goodness of fit test for the generalized Rayleigh distribution with unknown parameters. J Stat Comput Simul 81: 357–366MathSciNetzbMATHCrossRefGoogle Scholar
  2. Achcar JA, Fernández-Bremauntz AA, Rodrigues ER, Tzintzun G (2008) Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model. Environmetrics 19: 469–485MathSciNetCrossRefGoogle Scholar
  3. Achcar JA, Ortiz-Rodríguez G, Rodrigues ER (2009) Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model and a Metropolis–Hastings algorithm. Int J Pure Appl Math 53: 1–20zbMATHGoogle Scholar
  4. Achcar JA, Coelho-Barros EA, Cordeiro GM (2011) Beta generalized distributions and related exponentiated models: a Bayesian approach. Braz J Probab Stat (in press)Google Scholar
  5. Ahmad AA (2001) Moments of order statistics from doubly truncated continuous distributions and characterizations. Statistics 35: 479–494MathSciNetzbMATHCrossRefGoogle Scholar
  6. Ahmad AA, Al-Matrafi BN (2006) Recurrence relations for moments and conditional moments of generalized order statistics. Univ Sharjah J Pure Appl Sci 3: 61–81Google Scholar
  7. Ahmad N, Islam A, Salam A (2006) Analysis of optimal accelerated life test plans for periodic inspection: the case of exponentiated Weibull failure model. Int J Qual Reliab Manag 23: 1019–1046CrossRefGoogle Scholar
  8. Ahmad N, Bokhari MU, Quadri SMK, Khan MGM (2008) The exponentiated Weibull software reliability growth model with various testing-efforts and optimal release policy: a performance analysis. Int J Qual Reliab Manag 25: 211–235CrossRefGoogle Scholar
  9. Ahmad N, Khan MGM, Quadri SMK, Kumar M (2009) Modelling and analysis of software reliability with Burr type X testing-effort and release-time determination. J Model Manag 4: 28–54CrossRefGoogle Scholar
  10. Ahmad N, Khan MGM, Rafi LS (2010) A study of testing-effort dependent inflection S-shaped software reliability growth models with imperfect debugging. Int J Qual Reliab Manag 27: 89–110CrossRefGoogle Scholar
  11. Ahmad N, Bokhari MU, Mohd R (2011) Comparison of predictive capability of software reliability growth models with exponentiated Weibull distribution. Int J Comput Appl 15: 40–43Google Scholar
  12. Alexander C, Cordeiro GM, Ortega EMM, Sarabia JM (2012) Generalized beta-generated distributions. Comput Stat Data Anal 56: 1880–1897MathSciNetzbMATHCrossRefGoogle Scholar
  13. Ali MM, Pal M, Woo J (2007) Some exponentiated distributions. Korean Commun Stat 14: 93–109CrossRefGoogle Scholar
  14. Al-Nachawati H, Abu-Youssef SE (2009) A Bayesian analysis of order statistics from the generalized Rayleigh distribution. Appl Math Sci 3: 1315–1325MathSciNetGoogle Scholar
  15. Al-Nasser A, Baklizi A (2004) Interval estimation for the scale parameter of Burr type X distribution based on grouped data. J Mod Appl Stat Methods 3: 386–398Google Scholar
  16. Alshunnar FS, Raqab MZ, Kundu D (2010) On the comparison of the Fisher information of the log-normal and generalized Rayleigh distributions. J Appl Stat 37: 391–404MathSciNetCrossRefGoogle Scholar
  17. Aludaat KM, Alodat MT, Alodat TT (2008) Parameter estimation of Burr type X distribution for grouped data. Appl Math Sci 2: 415–423MathSciNetzbMATHGoogle Scholar
  18. Amin EA (2011) Maximum likelihood estimation of the mixed generalized Rayleigh distribution from type I censored samples. Appl Math Sci 5: 2753–2764MathSciNetzbMATHGoogle Scholar
  19. Amin Z, Hadi AS (2009) Fitting the exponentiated Weibull distribution to failure time data. In: Proceedings of the tenth Islamic countries conference on statistical sciences, vol I, Cairo, pp 424–250Google Scholar
  20. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49: 765–769MathSciNetzbMATHCrossRefGoogle Scholar
  21. Aryal GA, Tsokos CP (2011) Transmuted Weibull distribution: a generalization of the Weibull probability distribution. Eur J Pure Appl Math 4: 89–102MathSciNetGoogle Scholar
  22. Ashour SK, Afify WM (2007) Statistical analysis of exponentiated Weibull family under type I progressive interval censoring with random removals. J Appl Sci Res 3: 1851–1863Google Scholar
  23. Ashour SK, Afify WM (2008) Estimations of the parameters of exponentiated Weibull family with type II progressive interval censoring with random removals. J Appl Sci Res 4: 1428–1442Google Scholar
  24. Barghout M (2009) An exponentiated Weibull software reliability model. Adv Appl Stat 13: 111–130MathSciNetzbMATHGoogle Scholar
  25. Barreto-Souza W, Cribari-Neto F (2009) A generalization of the exponential-Poisson distribution. Stat Probab Lett 79: 2493–2500MathSciNetzbMATHCrossRefGoogle Scholar
  26. Barreto-Souza W, Santos AHS, Cordeiro GM (2008) The beta generalized exponential distribution. Statistics 80: 1005–1014Google Scholar
  27. Barreto-Souza W, Morais A, Cordeiro GM (2011) The Weibull-geometric distribution. J Stat Comput Simul 81: 645–657MathSciNetzbMATHCrossRefGoogle Scholar
  28. Barriga GDC, Ho LL, Cancho VG (2008) Planning accelerated life tests under Exponentiated-Weibull–Arrhenius model. Int J Qual Reliab Manag 25: 636–653CrossRefGoogle Scholar
  29. Bebbington M, Lai CD, Zitikis R (2007) A flexible Weibull extension. Reliab Eng Syst Saf 92: 719–726CrossRefGoogle Scholar
  30. Bokhari MU, Ahmad N (2007) Software reliability growth modeling for exponentiated Weibull functions with actual software failures data. In: Advances in computer science and engineering: reports and monographs 2. World Scientific Publishing Company, Singapore, pp 390–396Google Scholar
  31. Bokhari MU, Ahmad N, Islam A, Salam A (2000) Optimal accelerated life test plans for exponentiated Weibull failure model.
  32. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26: 211–243MathSciNetzbMATHGoogle Scholar
  33. Cancho VG, Bolfarine H (2001) Modeling the presence of immunes by using the exponentiated-Weibull model. J Appl Stat 28: 659–671MathSciNetzbMATHCrossRefGoogle Scholar
  34. Cancho VG, Bolfarine H, Achcar JA (1999) A Bayesian analysis for the exponentiated-Weibull distribution. J Appl Stat Sci 8: 227–242MathSciNetzbMATHGoogle Scholar
  35. Cancho VG, Ortega EMM, Bolfarine H (2006) The log-exponentiated-Weibull regression models with cure rate: local influence and residual analysis. J Data Sci 7: 433–458Google Scholar
  36. Cancho VG, Ortega EMM, Barriga GDC (2007) Comparison of modified Weibull models when bathtub-shaped failure rates. Rev Mat Estate 25: 111–136Google Scholar
  37. Cancho VG, Ortega EMM, Bolfarine H (2009) The exponentiated-Weibull regression models with a cure rate. J Appl Probab Stat 4: 125–156MathSciNetGoogle Scholar
  38. Carrasco JMF, Ortega EMM, Cordeiro GM (2008a) A generalized modified Weibull distribution for lifetime modeling. Comput Stat Data Anal 53: 450–462MathSciNetzbMATHCrossRefGoogle Scholar
  39. Carrasco JMF, Ortega EMM, Paula GA (2008b) Log-modified Weibull regression models with censored data: sensitivity and residual analysis. Comput Stat Data Anal 52: 4021–4029MathSciNetzbMATHCrossRefGoogle Scholar
  40. Chahkandi M, Ganjali M (2009) On some lifetime distributions with decreasing failure rate. Comput Stat Data Anal 53: 4433–4440MathSciNetzbMATHCrossRefGoogle Scholar
  41. Chaubey YP (2007) Modeling of distribution for excess-of-loss insurance data.
  42. Chaubey YP, Yang MJ (2007) Inference for length and area biased exponentiated Weibull distribution. J Stat Stud 26: 19–27MathSciNetGoogle Scholar
  43. Chen M-H, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94: 909–919MathSciNetzbMATHCrossRefGoogle Scholar
  44. Cheng C, Chen J, Li Z (2010) A new algorithm for MLE of exponentiated Weibull distribution with censoring data. Math Appl 23: 638–647MathSciNetzbMATHGoogle Scholar
  45. Choudhury A (2005) A simple derivation of moments of the exponentiated Weibull distribution. Metrika 62: 17–22MathSciNetzbMATHCrossRefGoogle Scholar
  46. Cid JER, Achcar JA (1999) Bayesian inference for nonhomogeneous Poisson processes in software reliability models assuming nonmonotonic intensity functions. Comput Stat Data Anal 32: 147–159CrossRefGoogle Scholar
  47. Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc B 48: 133–169zbMATHGoogle Scholar
  48. Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul. doi: 10.1080/0094965YY
  49. Cordeiro GM, Simas AB, Stosic BD (2008) The beta Weibull distribution.
  50. Cordeiro GM, Ortega EMM, Nadarajah S (2010) The Kumaraswamy Weibull distribution with application to failure data. J Frankl Inst 347: 1399–1429MathSciNetzbMATHCrossRefGoogle Scholar
  51. Cordeiro GM, Nadarajah S, Ortega EMM (2011a) General results for the beta Weibull distribution. J Stat Comput Simul (in press)Google Scholar
  52. Cordeiro GM, Ortega EMM, Silva G (2011b) The exponentiated generalized gamma distribution with application to lifetime data. J Stat Comput Simul 81: 827–842MathSciNetzbMATHCrossRefGoogle Scholar
  53. Cordeiro GM, Ortega EMM, Silva G (2011c) The beta extended Weibull family.
  54. Cordeiro GM, Simas AB, Stosic BD (2011d) Closed form expressions for moments of the beta Weibull distribution. An Acad Bras Ciencias 83: 357–373MathSciNetzbMATHGoogle Scholar
  55. Efron B (1988) Logistic regression, survival analysis, and the Kaplan–Meier curve. J Am Stat Assoc 83: 414–425MathSciNetzbMATHCrossRefGoogle Scholar
  56. Elshahat MAT (2006) Bayesian estimation of the parameters of the exponentiated Weibull distribution with progressively type I interval censored sample. J Commer Res Zagazig Univ Egypt 28Google Scholar
  57. Elshahat MAT (2008) Approximate Bayes estimators for the exponentiated Weibull parameters with progressive interval censoring. In: Proceedings of the 20th annual conference on statistics and modeling in human and social science, faculty of economic and political science, Cairo University, Egypt, pp 123–136Google Scholar
  58. Faizan M, Khan MI (2011) A characterization of continuous distributions through lower record statistics. Prob Stat Forum 4: 39–43MathSciNetGoogle Scholar
  59. Famoye F, Lee C, Olumolade O (2005) The beta Weibull distribution. J Stat Theory Appl 4: 121–136MathSciNetGoogle Scholar
  60. Feng Y, Shi Y-M, Zhou Q-J (2006) Bayesian estimation for the parameter of exponentiated-Weibull distribution under type-II doubly censored scheme. Syst Eng. doi: 1001-4098.0.2006-09-022
  61. Gera AW (1997) The modified exponentiated-Weibull distribution for life-time modeling. In: 1997 Proceedings of the annual reliability and maintainability symposium, Philadelphia, pp 149–152Google Scholar
  62. Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust N Z J Stat 41: 173–188MathSciNetzbMATHCrossRefGoogle Scholar
  63. Gupta RD, Kundu D (2009) Introduction of shape/skewness parameter(s) in a probability distribution. J Probab Stat Sci 7: 153–171MathSciNetGoogle Scholar
  64. Gupta RC, Gupta PL, Gupta RD (1998) Modeling failure time data by Lehman alternatives. Commun Stat Theory Methods 27: 887–904zbMATHCrossRefGoogle Scholar
  65. Gurler S, Capar S (2011) An algorithm for mean residual life computation of (nk +  1)-out-of-n systems: an application of exponentiated Weibull distribution. Appl Math Comput 217: 7806–7811MathSciNetzbMATHCrossRefGoogle Scholar
  66. Hamedani GG (2010) Characterizations of continuous univariate distributions based on the truncated moments of functions of order statistics. Stud Sci Math Hung 47: 462–484MathSciNetzbMATHGoogle Scholar
  67. Hashimoto EM, Ortega EMM, Cancho VG, Cordeiro GM (2010) The log-exponentiated Weibull regression model for interval-censored data. Comput Stat Data Anal 54: 1017–1035MathSciNetzbMATHCrossRefGoogle Scholar
  68. Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc B 52: 105–124MathSciNetzbMATHGoogle Scholar
  69. Jaheen ZF, Al Harbi MM (2011) Bayesian estimation for the exponentiated Weibull model via Markov Chain Monte Carlo simulation. Commun Stat Simul Comput 40: 532–543MathSciNetzbMATHCrossRefGoogle Scholar
  70. Jaheen ZF, Al-Matrafi BN (2002) Bayesian prediction bounds from the scaled Burr type X model. Comput Math Appl 44: 587–594MathSciNetzbMATHCrossRefGoogle Scholar
  71. Jiang R (2010) Discrete competing risk model with application to modeling bus-motor failure data. Reliab Eng Syst Saf 95: 981–988CrossRefGoogle Scholar
  72. Jiang R, Murthy DNP (1999) The exponentiated Weibull family: a graphical approach. IEEE Trans Reliab 48: 68–72CrossRefGoogle Scholar
  73. Jiang H, Xie M, Tang LC (2008) On the odd Weibull distribution. J Risk Reliab 222: 583–594Google Scholar
  74. Jones MC (2004) Families of distributions arising from distributions of order statistics. Test 13: 1–43MathSciNetzbMATHCrossRefGoogle Scholar
  75. Khan MGM, Ahmad N, Rafi LS (2008a) Optimal testing resource allocation for modular software based on a software reliability growth model: a dynamic programming approach. In: Proceedings of the 2008 international conference on computer science and software engineering, Wuhan, pp 759–762Google Scholar
  76. Khan RU, Anwar Z, Athar H (2008b) Recurrence relations for single and product moments of dual generalized order statistics from exponentiated Weibull distribution. Aligarh J Stat 28: 37–45MathSciNetGoogle Scholar
  77. Kim C, Jung J, Chung Y (2011) Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Stat Pap 52: 53–70MathSciNetzbMATHCrossRefGoogle Scholar
  78. Klakattawi HS, Baharith LA, Al-Dayian GR (2011) Bayesian and non Bayesian estimations on the exponentiated modified Weibull distribution for progressive censored sample. Commun Stat Simul Comput 40: 1291–1309MathSciNetzbMATHCrossRefGoogle Scholar
  79. Kundu D, Gupta RD (2004) Characterizations of the proportional (reversed) hazard class. Commun Stat Theory Methods 33: 3095–3102MathSciNetzbMATHCrossRefGoogle Scholar
  80. Kundu D, Gupta RD (2010) Modified Sarhan–Balakrishnan singular bivariate distribution. J Stat Plan Inference 140: 526–538MathSciNetzbMATHCrossRefGoogle Scholar
  81. Kundu D, Gupta RD (2011a) A class of bivariate models with proportional reversed hazard marginals. Sankhyā,B 72: 236–253MathSciNetCrossRefGoogle Scholar
  82. Kundu D, Gupta RD (2011b) Absolute continuous bivariate generalized exponential distribution. Adv Stat Anal 95: 169–185MathSciNetCrossRefGoogle Scholar
  83. Kundu D, Raqab M (2005) Generalized Rayleigh distribution: different methods of estimations. Comput Stat Data Anal 49: 187–200MathSciNetzbMATHCrossRefGoogle Scholar
  84. Kundu D, Raqab MZ (2007) Discriminating between the generalized Rayleigh and log-normal distribution. Statistics 41: 505–515MathSciNetzbMATHCrossRefGoogle Scholar
  85. Lai CD, Moore T, Xie M (1998) The beta integrated model. In: Proceedings international workshop on reliability modeling and analysis: from theory to practice, Singapore, pp 153–159Google Scholar
  86. Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. IEEE Trans Reliab 52: 33–37CrossRefGoogle Scholar
  87. Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New YorkzbMATHGoogle Scholar
  88. Lee C, Famoye F, Olumolade O (2007) Beta Weibull distribution: some properties and applications to censored data. J Mod Appl Stat Methods 6: 173–186Google Scholar
  89. Lemonte AJ, Barreto-Souza W, Cordeiro GM (2011) The exponentiated Kumaraswamy distribution and its log-transform. Braz J Probab Stat (in press)Google Scholar
  90. Lindley DV (1980) Approximate Bayesian method. Trab Estad 31: 223–237CrossRefGoogle Scholar
  91. Malinowska I, Szynal D (2005) Inference and prediction for the Burr type X model based on the kth lower record. J Stat Theory Appl 4: 282–291MathSciNetGoogle Scholar
  92. Malinowska I, Szynal D (2008) On characterization of certain distributions of kth lower (upper) record values. Appl Math Comput 202: 338–347MathSciNetzbMATHCrossRefGoogle Scholar
  93. Meintanis SG (2008) A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution. Comput Stat Data Anal 52: 2496–2503MathSciNetzbMATHCrossRefGoogle Scholar
  94. Mi J (1995) Bathtub failure rate and upside-down bathtub mean residual life. IEEE Trans Reliab 44: 388–391CrossRefGoogle Scholar
  95. Montazer HA, Shayib MA (2010) Shrinkage estimators for calculating reliability, Weibull case. J Appl Stat Sci 17: 219–233Google Scholar
  96. Mousa MAMA (2001) Inference and prediction for the Burr type X model based on records. Statistics 35: 415–425MathSciNetzbMATHCrossRefGoogle Scholar
  97. Mudholkar GS, Asubonteng KO (2010) Data-transformation approach to lifetimes data analysis: an overview. J Stat Plan Inference 140: 2904–2917MathSciNetzbMATHCrossRefGoogle Scholar
  98. Mudholkar GS, Hutson AD (1996) The exponentiated Weibull family: some properties and a flood data application. Commun Stat Theory Methods 25: 3059–3083MathSciNetzbMATHCrossRefGoogle Scholar
  99. Mudholkar GS, Sarkar IC (1999) A proportional hazards modeling of multisample reliability data. Commun Stat Theory Methods 28: 2079–2101MathSciNetzbMATHCrossRefGoogle Scholar
  100. Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42: 299–302zbMATHCrossRefGoogle Scholar
  101. Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37: 436–445zbMATHCrossRefGoogle Scholar
  102. Mudholkar GS, Srivastava DK, Kollia G (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91: 1575–1583MathSciNetzbMATHCrossRefGoogle Scholar
  103. Murthy DNP, Xi M, Jiangs R (2004) Weibull models. Wiley, HobokenzbMATHGoogle Scholar
  104. Nadarajah S (2009) Bathtub-shaped failure rate functions. Qual Quant 43: 855–863CrossRefGoogle Scholar
  105. Nadarajah S (2011) The exponentiated exponential distribution: a survey. Adv Stat Anal. doi: 10.1007/s10182-011-0154-5
  106. Nadarajah S, Gupta AK (2005) On the moments of the exponentiated Weibull distribution. Commun Stat Theory Methods 34: 253–256MathSciNetzbMATHGoogle Scholar
  107. Nadarajah S, Kotz S (2006a) Discussion of “Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis”. Hydrol Sci J 51: 1203–1204CrossRefGoogle Scholar
  108. Nadarajah S, Kotz S (2006b) The exponentiated type distributions. Acta Appl Math 92: 97–111MathSciNetzbMATHCrossRefGoogle Scholar
  109. Nadarajah S, Kotz S (2008) Strength modeling using Weibull distributions. J Mech Sci Technol 22: 1247–1254CrossRefGoogle Scholar
  110. Nadarajah S, Cordeiro G, Ortega E (2011) General results for the Kumaraswamy G distribution. J Stat Comput Simul. doi: 10.1080/00949655.2011.562504
  111. Nassar MM, Eissa FH (2003) On the exponentiated Weibull distribution. Commun Stat Theory Methods 32: 1317–1336MathSciNetzbMATHCrossRefGoogle Scholar
  112. Nassar MM, Eissa FH (2004) Bayesian estimation for the exponentiated Weibull model. Commun Stat Theory Methods 33: 2343–2362MathSciNetzbMATHGoogle Scholar
  113. Nikulin M, Haghighi F (2006) A chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data. J Math Sci 133: 1333–1341MathSciNetCrossRefGoogle Scholar
  114. Nikulin M, Haghighi F (2009) On the power generalized Weibull family: model for cancer censored data. Metron LXVII:75–86Google Scholar
  115. Ortega EMM, Cancho VG, Bolfarine H (2006) Influence diagnostics in exponentiated-Weibull regression models with censored data. SORT 30: 171–192MathSciNetzbMATHGoogle Scholar
  116. Ortega EMM, Cordeiro GM, Carrasco JMF (2011) The log-generalized modified Weibull regression model. Braz J Probab Stat 25: 64–89MathSciNetCrossRefGoogle Scholar
  117. Pal M, Ali MM, Woo J (2006) Exponentiated Weibull distribution. Statistica LXVI: 139–147MathSciNetGoogle Scholar
  118. Pascoa MAP, Ortega EMM, Cordeiro GM, Paranaíba PF (2011) The Kumaraswamy-generalized gamma distribution with application in survival analysis. Stat Methodol 8: 411–433MathSciNetzbMATHCrossRefGoogle Scholar
  119. Qian L (2011) Fisher information matrix for three-parameter exponentiated-Weibull distribution under type II censoring. Stat Methodol 9: 320–329CrossRefGoogle Scholar
  120. Raja TA, Mir AH (2011) On extension of some exponentiated distributions with application. Int J Contemp Math Sci 6: 393–400MathSciNetzbMATHGoogle Scholar
  121. Raqab MZ (1998) Order statistics from the Burr type X model. Comput Math Appl 36: 111–120MathSciNetzbMATHCrossRefGoogle Scholar
  122. Raqab MZ, Kundu D (2006) Burr type X distribution: revisited. J Probab Stat Sci 4: 179–193MathSciNetGoogle Scholar
  123. Raqab MZ, Madi MT (2009) Bayesian analysis for the exponentiated Rayleigh distribution. Metron LXVII:269–288Google Scholar
  124. Raqab MZ, Madi MT (2011) Inference for the generalized Rayleigh distribution based on progressively censored data. J Stat Plan Inference 141: 3313–3322MathSciNetzbMATHCrossRefGoogle Scholar
  125. Razmkhah M, Khatib B (2010) On the nonparametric inference in the exponentiated models based on complete samples and extreme order statistics. In: Proceedings of ISC10, Hamburg, pp 344–353Google Scholar
  126. Rinne H (2009). The Weibull distribution: a handbook CRC Press, Boca RatonzbMATHGoogle Scholar
  127. Rodrigues J, Balakrishnan N, Cordeiro GM, Castro MD (2011) A unified view on lifetime distributions arising from selection mechanisms. Comput Stat Data Anal 55: 3311–3319zbMATHCrossRefGoogle Scholar
  128. Ruiz JM, Navarro J (1996) Characterizations based on conditional expectations of the doubled truncated distribution. Ann Inst Stat Math 48: 563–572MathSciNetzbMATHCrossRefGoogle Scholar
  129. Salem AM, Abo-Kasem OE (2011) Estimation for the parameters of the exponentiated Weibull distribution based on progressive hybrid censored samples. Int J Contemp Math Sci 6: 1713–1724MathSciNetzbMATHGoogle Scholar
  130. Sarabia JM, Castillo E (2005) About a class ofmax-stable families with applications to income distributions. Metron LXIII:505–527MathSciNetGoogle Scholar
  131. Sarhan AM, Kundu D (2009) Generalized linear failure rate distribution. Commun Stat Theory Methods 38: 642–660MathSciNetzbMATHCrossRefGoogle Scholar
  132. Sarhan AM, Zaindin M (2009) Modified Weibull distribution. Appl Sci 11: 123–136MathSciNetzbMATHGoogle Scholar
  133. Sartawi HA, Abu-Salih MS (1991) Bayes prediction bounds for the Burr type X model. Commun Stat Theory Methods 20: 2307–2330MathSciNetzbMATHCrossRefGoogle Scholar
  134. Shao QX, Wong H, Xia J, Ip WC (2004) Models for extremes using the extended three- parameter Burr XII system with application to flood frequency analysis. Hydrol Sci J 49: 685–702CrossRefGoogle Scholar
  135. Shawky AI, Bakoban RA (2009) Conditional expectation of certain distributions of record values. Int J Math Anal 3: 829–838MathSciNetzbMATHGoogle Scholar
  136. Shi JH, Wu HX (2009) Empirical Bayes estimation of the shape parameter of two-parameter exponentiated Weibull distribution. Math Pract Theory 39: 201–208MathSciNetGoogle Scholar
  137. Silva GO, Ortega EMM, Cordeiro GM (2010a) The beta modified Weibull distribution. Lifetime Data Anal 16: 409–430MathSciNetCrossRefGoogle Scholar
  138. Silva RB, Barreto-Souza W, Cordeiro GM (2010b) A new distribution with decreasing, increasing and upside-down bathtub failure rate. Comput Stat Data Anal 54: 935–944MathSciNetzbMATHCrossRefGoogle Scholar
  139. Sinclair CD, Spurr BD, Ahmad MI (1990) Modified Anderson–Darling test. Commun Stat Theory Methods 19: 3677–3686CrossRefGoogle Scholar
  140. Singh U, Gupta PK, Upadhyay SK (2002) Estimation of exponentiated Weibull shape parameters under Linex loss function. Commun Stat Simul Comput 31: 523–537MathSciNetzbMATHCrossRefGoogle Scholar
  141. Singh U, Gupta PK, Upadhyay SK (2005a) Estimation of parameters for exponentiated-Weibull family under type-II censoring scheme. Comput Stat Data Anal 48: 509–523MathSciNetzbMATHCrossRefGoogle Scholar
  142. Singh U, Gupta PK, Upadhyay SK (2005b) Estimation of three-parameter exponentiated-Weibull distribution under type-II censoring. J Stat Plan Inference 134: 350–372MathSciNetzbMATHCrossRefGoogle Scholar
  143. Singh U, Gupta PK, Upadhyay SK (2006) Some point estimates for the shape parameters of exponentiated Weibull family. J Korean Stat Soc 35: 63–77MathSciNetzbMATHGoogle Scholar
  144. Surles JG, D’Ambrosio DM (2004) A Burr type X chain-of-links model for carbon fibers. J Compos Mater 38: 1337–1343CrossRefGoogle Scholar
  145. Surles JG, Padgett WJ (2001) Inference for reliability and stress-strength for a scaled Burr type X distribution. Lifetime Data Anal 7: 187–200MathSciNetzbMATHCrossRefGoogle Scholar
  146. Surles JG, Padgett WJ (2005) Some properties of a scaled Burr type X distribution. J Stat Plan Inference 128: 271–280MathSciNetzbMATHCrossRefGoogle Scholar
  147. Takahasi K (1965) Note on the multivariate Burr’s distribution. Ann Inst Stat Math 17: 257–260MathSciNetzbMATHCrossRefGoogle Scholar
  148. Tang Y, Xie M, Goh TN (2002) On the change points of mean residual life and failure rate for some extended Weibull distributions. In: Proceedings of the third international conference on mathematical methods in reliability, Trondheim, pp 627–630Google Scholar
  149. Tian Y-F, Shi Y-M, Li F (2007) Estimation of exponentiated Weibull distribution parameters using fuzzy least-squares method. Comput Eng Appl 43Google Scholar
  150. Tierney L, Kadane JB (1986) Accurate approximation for posterior moments and marginal densities. J Am Stat Assoc 81: 82–86MathSciNetzbMATHCrossRefGoogle Scholar
  151. Tse SK, Yuen HK (2006) A comparison of three families of survival distributions for quantal response data. J Biopharm Stat 16: 253–264MathSciNetCrossRefGoogle Scholar
  152. Voda VG (2009) A modified Weibull hazard rate as generator of a generalized Maxwell distribution. Math Rep 11: 171–179MathSciNetGoogle Scholar
  153. Wahed AS, Luong TM, Jeong JH (2009) A new generalization of Weibull distribution with application to a breast cancer data set. Stat Med 28: 2077–2094MathSciNetCrossRefGoogle Scholar
  154. Wang M, Rennolls K (2005) Tree diameter distribution modelling: introducing the logit-logistic distribution. Can J For Res 35: 1305–1313CrossRefGoogle Scholar
  155. Weibbach R (2008) Modelling Markovian migration in finance and medicine.
  156. Wilding GE, Mudholkar GS (2008) Empirical approximations for Hoeffding’s test of bivariate independence using two Weibull extensions. Stat Methodol 5: 160–170MathSciNetzbMATHCrossRefGoogle Scholar
  157. Wilding GE, Mudholkar GS, Kollia GD (2007) Two sets of isotones for comparing tests of exponentiality. J Stat Plan Inference 137: 3815–3825MathSciNetzbMATHCrossRefGoogle Scholar
  158. Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub failure rate function. Reliab Eng System Saf 76: 279–285CrossRefGoogle Scholar
  159. Xie M, Goh TN, Tang Y (2004) On changing points of mean residual life and failure rate function for some generalized Weibull distributions. Reliab Eng Syst Saf 84: 293–299CrossRefGoogle Scholar
  160. Zaindin M, Sarhan AM (2011) New generalized Weibull distribution. Pak J Stat 27: 13–30MathSciNetGoogle Scholar
  161. Zhang T, Xie M, Tang LC, Ng SH (2005) Reliability and modeling of systems integrated with firmware and hardware. Int J Reliab Qual Saf Eng 12: 227–239CrossRefGoogle Scholar
  162. Zhou M, Yang D, Wang Y, Nadarajah S (2008) Moments of the scaled Burr type X distribution. J Comput Anal Appl 10: 523–525MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Saralees Nadarajah
    • 1
    Email author
  • Gauss M. Cordeiro
    • 2
  • Edwin M. M. Ortega
    • 3
  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Departamento de Estatística e InformáticaUniversidade Federal Rural of PernambucoRecifeBrazil
  3. 3.Departamento de Ciências ExatasUniversidade de São PauloPiracicabaBrazil

Personalised recommendations