Statistical Papers

, Volume 54, Issue 3, pp 727–739 | Cite as

Maximum likelihood estimation for ordered expectations of correlated binary variables

Open Access
Regular Article

Abstract

A multivariate binary distribution that incorporates the correlation between individual variables is considered. The availability of auxiliary information taking the form of simple ordering constraints on their expected values is assumed. The problem of constructing constraint-preserving estimates for expectations is formulated as conditional maximization of convex likelihood function for corresponding multinomial distribution with suitably chosen restrictions. Starting values for convex optimization algorithms are proposed. The proposed estimator is consistent under mild assumptions.

Keywords

Binomial parameter Inequality constraints Maximum likelihood 

Mathematics Subject Classification (2000)

62F30 

References

  1. Ahuja RK, Orlin JB (2001) A fast scaling algorithm for minimizing separable convex functions subject to chain constraints. Oper Res 49: 784–789MathSciNetMATHCrossRefGoogle Scholar
  2. Ayer M, Brunk HD, Ewing GM, Reid WT, Silverman E (1955) An empirical distribution function for sampling with incomplete information. Ann Math Stat 6(4): 641–647MathSciNetCrossRefGoogle Scholar
  3. Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions. Wiley, New YorkMATHGoogle Scholar
  4. Bartoszyński R, Niewiadomska-Bugaj M (2008) Probability and statistical inference. Wiley, New YorkMATHGoogle Scholar
  5. Best MJ, Chakravarti N (1990) Active set algorithms for isotonic regression; a unifying framework. Math Program 47: 425–439MathSciNetMATHCrossRefGoogle Scholar
  6. Block H, Qian S, Sampson A (1994) J Comput Graph Stat 3(3): 285–300MathSciNetGoogle Scholar
  7. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New YorkMATHGoogle Scholar
  8. Brunk HB (1955) Maximum likelihood estimates of monotone parameters. Ann Math Stat 26: 607–616MathSciNetMATHCrossRefGoogle Scholar
  9. Burdakov O, Grimwall A, Hussian M (2004) A generalized PAV algorithm for monotonic regression in several variables. In: COMPSTAT proceedings in computational statistics. Physica-Verlag/Springer, Heidelberg, pp 761–767Google Scholar
  10. Charras A, van Eeden C (1991) Bayes and admissibility properties of estimators in truncated parameter spaces. Can J Stat 19: 121–134MATHCrossRefGoogle Scholar
  11. de Leeuw J, Hornik K, Mair P (2009) Isotone optimization in R: pool–adjacent–violators algorithm (PAVA) and active set methods. J Stat Softw 32(5): 1–24Google Scholar
  12. Goldberger AS (1964) Econometric theory. Wiley, New YorkMATHGoogle Scholar
  13. Hansohm J (2007) Algorithms and error estimations for monotone regression on partially preordered sets. J Multivar Anal 98: 1043–1050MathSciNetMATHCrossRefGoogle Scholar
  14. Hansohm J, Hu X (2012) A convergent algorithm for a generalized multivariate isotonic regression problem. Stat Papers 53(1): 107–115MathSciNetMATHCrossRefGoogle Scholar
  15. Jewell NP, Kalbfleisch JD (2004) Maximum likelihood estimation of ordered multinomial probabilities. Biometrics 5(2): 291–306MATHGoogle Scholar
  16. Katz MW (1963) Estimating ordered probabilities. Ann Math Stat 34: 967–972MATHCrossRefGoogle Scholar
  17. Lange K (2001) Numerical analysis for statisticians. Springer, New YorkGoogle Scholar
  18. Lee CC (1983) The min–max algorithm and isotonic regression. Ann Stat 11: 467–477MATHCrossRefGoogle Scholar
  19. Lehmann EL, Cassella G (1998) Theory of point estimation. Springer, New YorkMATHGoogle Scholar
  20. Marchand E, MacGibbon B (2000) Minimax estimation of a constrained binomial proportion. Stat Decis 18: 129–167MathSciNetMATHGoogle Scholar
  21. McKeown K, Jewell NP (2010) Miclassification of current status data. Lifetime Data Anal 16: 215–230MathSciNetCrossRefGoogle Scholar
  22. Nesterov Y, Nemirovski A (1994) Interior point polynomial algorithms in convex programming, studies in applied mathematics 13. SIAM, PhiladelphiaCrossRefGoogle Scholar
  23. Parsian A, Farsipour NS (1997) Estimation of parameters of exponential distribution in the truncated space using asymmetric loss function. Stat Papers 38: 423–443MATHCrossRefGoogle Scholar
  24. Perron F (2003) Improving on the MLE of p for a binomial(n,p) when p is around 1/2. In: Moore M, Froda S, Leger C (eds) Mathematical statistics and applications: Fesschrift for Constance van Eeden. IMS lecture notes and monograph series, vol 43. IMS, Hayward, pp 45–61Google Scholar
  25. Qian S (1992) Minimum lower sets algorithm for isotonic regression. Stat Probab Lett 15: 31–35MATHCrossRefGoogle Scholar
  26. Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, New YorkMATHGoogle Scholar
  27. Sackrowitz H (1982) Procedures for improving the MLE for ordered binomial parameters. J Stat Plan Inference 6: 287–296MathSciNetMATHCrossRefGoogle Scholar
  28. Sackrowitz H, Strawderman W (1974) On the admissibility of the M.L.E. for ordered binomial parameters. Ann Stat 2: 822–828MathSciNetMATHCrossRefGoogle Scholar
  29. Sundt B (1999) An introduction to non-life insurance mathematics. VVW, KarlsruheGoogle Scholar
  30. van Eeden C (1956) Maximum likelihood estimation of ordered probabilities. Proc Kon Nederl Akad Wetensch Ser A 60: 128–136Google Scholar
  31. van Eeden C (1957) Maximum likelihood estimation of partially or completely ordered probabilities. Proc Kon Nederl Akad Wetensch Ser A 59: 444–455Google Scholar
  32. van Eeden C (1958) Testing and estimating ordered parameters of probability distributions. Ph.D. thesis, University of Amsterdam, AmsterdamGoogle Scholar
  33. van Eeden C (2006) Restricted parameter space estimation problems: admissibility and minimaxity results. Springer, New YorkMATHGoogle Scholar
  34. Wolny-Dominiak A, Trze¸siok M (2008) Monte Carlo simulation applied to a’priori rate making, In: Proceedings of 26th international conference mathematical methods in economics 2008. Technical University of Liberec, Liberec, 17–19 Sept 2008Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of EconomicsKatowicePoland

Personalised recommendations