Testing fuzzy hypotheses based on vague observations: a p-value approach

Abstract

This paper deals with the problem of testing statistical hypotheses when both the hypotheses and data are fuzzy. To this end, we first introduce the concept of fuzzy p-value and then develop an approach for testing fuzzy hypotheses by comparing a fuzzy p-value and a fuzzy significance level. Numerical examples are provided to illustrate the approach for different cases.

This is a preview of subscription content, log in to check access.

References

  1. Arnold BF (1998) Testing fuzzy hypotheses with crisp data. Fuzzy Sets Syst 94: 323–333

    MATH  Article  Google Scholar 

  2. Buckley JJ (2005) Fuzzy statistics: hypothesis testing. Soft Comput 9: 512–518

    MathSciNet  MATH  Article  Google Scholar 

  3. Casals MR, Gil MA, Gil P (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets Syst 20: 175–190

    MathSciNet  MATH  Article  Google Scholar 

  4. Colubi A (2009) Statistical inference about the means of fuzzy random variables: applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets Syst 160: 344–356

    MathSciNet  MATH  Article  Google Scholar 

  5. Couso I, Sanchez L (2008) Defuzzification of fuzzy p-values. In: Advances in soft computing, vol 48 (Soft methods for handling variability and imprecision). Springer, Heidelberg, pp 126–132

  6. Denœux T, Masson MH, Hébert PA (2005) Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153: 1–28

    MATH  Article  Google Scholar 

  7. Dubois D, Prade H (1988) Possibility theory. Plenum Press, New-York

    Google Scholar 

  8. Filzmoser P, Viertl R (2004) Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59: 21–29

    MathSciNet  MATH  Article  Google Scholar 

  9. Geyer CJ, Meeden GD (2005) Fuzzy and randomized confidence intervals and p-values. Stat Sci 20: 358–366

    MathSciNet  MATH  Article  Google Scholar 

  10. Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112: 501–510

    MathSciNet  MATH  Article  Google Scholar 

  11. Grzegorzewski P (2001) Fuzzy tests—defuzzification and randomization. Fuzzy Sets Syst 118: 437–446

    MathSciNet  MATH  Article  Google Scholar 

  12. Knight K (2000) Mathematical statistics. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  13. Lubiano MA, Gil MA (1999) Estimating the expected value of fuzzy random variables in random samplings from finite populations. Stat Pap 40: 277–295

    MathSciNet  MATH  Article  Google Scholar 

  14. Maple 9.5, Waterloo Maple Inc., Waterloo, Canada

  15. Neyman J, Pearson ES (1933) The theory of statistical hypotheses in relation to probabilities a priori. Proc Camb Phil Soc 29: 492–510

    Article  Google Scholar 

  16. Parchami A, Taheri SM, Mashinchi M (2010) Fuzzy p-value in testing fuzzy hypotheses with crisp data. Stat Pap 51: 209–226

    MathSciNet  Article  Google Scholar 

  17. Taheri SM, Arefi M (2009) Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput 13: 617–625

    MATH  Article  Google Scholar 

  18. Taheri SM, Behboodian J (1999) Neyman–Pearson Lemma for fuzzy hypotheses testing. Metrika 49: 3–17

    MathSciNet  MATH  Article  Google Scholar 

  19. Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Sets Syst 123: 39–48

    MathSciNet  MATH  Article  Google Scholar 

  20. Taheri SM (2003) Trends in fuzzy statistics. Austrian J Stat 32: 239–257

    Google Scholar 

  21. Tanaka H, Okuda T, Asai K et al (1979) Fuzzy information and decision in a statistical model. In: Gupta MM (eds) Advances in fuzzy set theory and applications.. North-Holland, Amsterdam, pp 303–320

    Google Scholar 

  22. Torabi H, Behboodian J, Taheri SM (2006) Neyman–Pearson lemma for fuzzy hypotheses testing with vague data. Metrika 64: 289–304

    MathSciNet  MATH  Article  Google Scholar 

  23. Torabi H, Behboodian J (2007) Likelihood ratio test for fuzzy hypotheses testing. Stat Pap 48: 509–522

    MATH  Article  Google Scholar 

  24. Torabi H, Behboodian J (2005) Sequential probability ratio test for fuzzy hypotheses testing with vague data. Austrian J Stat 34: 25–38

    Google Scholar 

  25. Viertl R (1991) On Bayes’ theorem for fuzzy data. Stat Pap 32: 115–122

    MathSciNet  MATH  Article  Google Scholar 

  26. Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca Raton, Florida

    Google Scholar 

  27. Viertl R (2006) Univariate statistical analysis with fuzzy data. Comput Stat Data Anal 51: 133–147

    MathSciNet  MATH  Article  Google Scholar 

  28. Wang X, Kerre EE (2001) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118: 387–405

    MathSciNet  MATH  Article  Google Scholar 

  29. Watanabe N, Imaizumi T (1993) A fuzzy statistical test of fuzzy hypotheses. Fuzzy Sets Syst 53: 167–178

    MathSciNet  MATH  Article  Google Scholar 

  30. Yuan Y (1991) Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 43: 139–157

    MATH  Article  Google Scholar 

  31. Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–359

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Mahmoud Taheri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parchami, A., Taheri, S.M. & Mashinchi, M. Testing fuzzy hypotheses based on vague observations: a p-value approach. Stat Papers 53, 469–484 (2012). https://doi.org/10.1007/s00362-010-0353-2

Download citation

Keywords

  • Testing hypothesis
  • Vague data
  • Fuzzy p-value
  • Fuzzy significance level

Mathematics Subject Classification (2000)

  • Primary: 62F03
  • Secondary: 03E72