Advertisement

Statistical Papers

, Volume 53, Issue 1, pp 165–176 | Cite as

A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model

  • Vicente G. Cancho
  • Mário de CastroEmail author
  • Josemar Rodrigues
Regular Article

Abstract

The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway–Maxwell–Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.

Keywords

Survival analysis Cure rate models Long-term survival models Conway–Maxwell–Poisson (COM-Poisson) distribution Bayesian analysis Weibull distribution 

Mathematics Subject Classification (2000)

62N01 62F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47: 501–515CrossRefGoogle Scholar
  2. Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11: 15–53zbMATHGoogle Scholar
  3. Chen MH, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94: 909–919MathSciNetzbMATHCrossRefGoogle Scholar
  4. Chen MH, Shao QM, Ibrahim J (2000) Monte Carlo methods in Bayesian computation. Springer, New YorkzbMATHCrossRefGoogle Scholar
  5. Conway RW, Maxwell WL (1961) A queuing model with state dependent services rates. J Ind Eng XII: 132–136Google Scholar
  6. Cooner F, Banerjee S, Carlin BP, Sinha D (2007) Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 102: 560–572MathSciNetzbMATHCrossRefGoogle Scholar
  7. Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91: 883–904MathSciNetzbMATHCrossRefGoogle Scholar
  8. Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca RatonzbMATHGoogle Scholar
  9. Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive distributions with implementation via sampling-based methods. In: Bayesian Statistics 4 (Peñíscola, 1991), Oxford Univ. Press, New York, pp 147–167Google Scholar
  10. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7: 457–511CrossRefGoogle Scholar
  11. Gschlößl S, Czado C (2008) Modelling count data with overdispersion and spatial effects. Stat Pap 49: 531–552zbMATHCrossRefGoogle Scholar
  12. Guikema SD, Coffelt JP (2008) A flexible count data regression model for risk analysis. Risk Anal 28: 213–223CrossRefGoogle Scholar
  13. Ibrahim JG, Chen MH, Sinha D (2001) Bayesian survival analysis. Springer, New YorkzbMATHGoogle Scholar
  14. Kadane JB, Shmueli G, Minka TP, Borle S, Boatwright P (2006) Conjugate analysis of the Conway-Maxwell-Poisson distribution. Bayesian Anal 1: 363–374MathSciNetCrossRefGoogle Scholar
  15. Kirkwood JM, Ibrahim JG, Sondak VK, Richards J, Flaherty LE, Ernstoff MS, Smith TJ, Rao U, Steele M, Blum RH (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol 18: 2444–2458Google Scholar
  16. Kokonendji CC, Mizère D, Balakrishnan N (2008) Connections of the Poisson weight function to overdispersion and underdispersion. J Stat Plann Inference 138: 1287–1296zbMATHCrossRefGoogle Scholar
  17. Lee DJ, Durban M (2009) Smooth–Car mixed models for spatial count data. Comput Stat Data Anal 53: 2968–2979MathSciNetzbMATHCrossRefGoogle Scholar
  18. Lord D, Guikema SD, Geedipally SR (2008) Application of the Conway–Maxwell–Poisson generalized linear model for analyzing motor vehicle crashes. Accid Anal Prev 40: 1123–1134CrossRefGoogle Scholar
  19. Maller RA, Zhou X (1996) Survival analysis with long-term survivors. Wiley, New YorkzbMATHGoogle Scholar
  20. Nadarajah S (2009) Useful moment and CDF formulations for the COM-Poisson distribution. Stat Pap 50: 617–622MathSciNetzbMATHCrossRefGoogle Scholar
  21. Rodrigues J, Cancho VG, de Castro M, Louzada-Neto F (2009a) On the unification of the long-term survival models. Stat Prob Lett 79: 753–759zbMATHCrossRefGoogle Scholar
  22. Rodrigues J, de Castro M, Cancho VG, Balakrishnan N (2009b) COM–Poisson cure rate survival models and an application to a cutaneous melanoma data. J Stat Plann Inference 139: 3605–3611zbMATHCrossRefGoogle Scholar
  23. Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. J R Stat Soc Ser C 54: 127–142MathSciNetzbMATHCrossRefGoogle Scholar
  24. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64: 583–639zbMATHCrossRefGoogle Scholar
  25. Thomas A, O’Hara B, Ligges U, Sturtz S (2006) Making BUGS open. R News 6: 12–17Google Scholar
  26. Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98: 1063–1078MathSciNetCrossRefGoogle Scholar
  27. Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, SingaporezbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vicente G. Cancho
    • 1
  • Mário de Castro
    • 1
    Email author
  • Josemar Rodrigues
    • 2
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrasil
  2. 2.Departamento de EstatísticaUniversidade Federal de São CarlosSão CarlosBrasil

Personalised recommendations