Statistical Papers

, 51:227

# Limit results for ordered uniform spacings

• Ismihan Bairamov
• Alexandre Berred
• Alexei Stepanov
Regular Article

## Abstract

Let Δk:n = Xk,n − Xk-1,n (k = 1, 2, . . . , n + 1) be the spacings based on uniform order statistics, provided X0,n = 0 and Xn+1,n = 1. Obtained from uniform spacings, ordered uniform spacings 0 = Δ0,n < Δ1,n < . . . < Δn+1,n, are discussed in the present paper. Distributional and limit results for them are in the focus of our attention.

### Keywords

Uniform distribution Order statistics Spacings Ordered spacings Limit theorems

60G70 62G30

### References

1. Abramson L (1966) The distribution of the smallest sample spacing. Ann Math Stat Abstract 37: 1421Google Scholar
2. Arnold B, Balakrishnan N, Nagaraja H (1992) A first course in order statistics. Wiley, New York
3. Bairamov IG, Ozkaya N (2000) On the non-parametric test for two sample problem based on spacings. J Appl Stat Sci 10: 57–68
4. Barton DE, David FN (1956) Some notes on ordered random intervals. J Roy Stat Soc B 18: 79–94
5. David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, New York
6. Devroye L (1981) Laws of the iterated logarithm for order statistics of uniform spacings. Ann Probab 9: 860–867
7. Eryilmaz S, Stepanov A (2008) Runs in an ordered sequence of random variables. Metrika 67: 299–313
8. Feller W (1967) An introduction to probability theory and its applications, 2nd edn. Wiley, New YorkGoogle Scholar
9. Hall PG (1984) Limit theorems for sums of general functions of m-spacings. Math Proc Cambridge Philos Soc 96: 517–532
10. Hu T, Zhuang W (2005) Stochastic properties of p-spacings of generalized order statistics. Probab Eng Inf Sci 19(2): 259–278
11. Kotz S, Nadarajah S (2000) Extreme value distributions. Theory and applications. Imperial College Press, London
12. Kimball BF (1947) Some basic theories for developing tests of fit for the case of nonparametric probability distribution function. Ann Math Stat 18: 540–548
13. Levy PP (1939) Sur le division d’un segment par des points choisis au hazard. C.R. Acad Sci Paris 208: 147–149Google Scholar
14. Moran AP (1947) The random division of an interval. J Roy Stat Soc B9: 92–98Google Scholar
15. Nevzorov V (2001) Records: Mathematical Theory. American Mathematical Society, ProvidenceGoogle Scholar
16. Pyke R (1965) Spacings (with discussions). J Roy Stat Soc B 27: 395–449
17. Renyi A (1953) On the theory of order statistics. Acta math Hung 4: 191–231
18. Sherman B (1950) A random variable related to the spacing of sample values. Ann Math Stat 21: 339–361
19. Weiss L (1959) The limiting joint distribution of the largest and smallest sample spacings. Ann Math Stat 30: 590–593
20. Weiss L (1969) The joint asymptotic distribution of the k-smallest sample spacings. J Appl Probab 6: 442–448

## Authors and Affiliations

• Ismihan Bairamov
• 1
• Alexandre Berred
• 2
• Alexei Stepanov
• 3
1. 1.Department of MathematicsIzmir University of EconomicsBalcovaTurkey
2. 2.Faculté des Sciences et TechniquesUniversité du HavreLe Havre CedexFrance