Fuzzy p-value in testing fuzzy hypotheses with crisp data

Abstract

In testing statistical hypotheses, as in other statistical problems, we may be confronted with fuzzy concepts. This paper deals with the problem of testing hypotheses, when the hypotheses are fuzzy and the data are crisp. We first introduce the notion of fuzzy p-value, by applying the extension principle and then present an approach for testing fuzzy hypotheses by comparing a fuzzy p-value and a fuzzy significance level, based on a comparison of two fuzzy sets. Numerical examples are also provided to illustrate the approach.

This is a preview of subscription content, log in to check access.

References

  1. Arnold BF (1996) An approach to fuzzy hypothesis testing. Metrika 44: 119–126

    MATH  Article  MathSciNet  Google Scholar 

  2. Arnold BF (1998) Testing fuzzy hypotheses with crisp data. Fuzzy Sets Syst 94: 323–333

    MATH  Article  Google Scholar 

  3. Berger JO, Sellke T (1987) Testing a point null hypothesis: the irreconcilability of p-values and evidence. J Am Stat Assoc 82: 112–122

    MATH  Article  MathSciNet  Google Scholar 

  4. Buckley JJ (2005) Fuzzy statistics: hypothesis testing. Soft Comput 9: 512–518

    MATH  Article  MathSciNet  Google Scholar 

  5. Casals MR, Gil MA, Gil P (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets Syst 20: 175–190

    MATH  Article  MathSciNet  Google Scholar 

  6. Casals MR (1993) Bayesian testing of fuzzy parametric hypotheses from fuzzy information. Oper Res 27: 189–199

    MATH  MathSciNet  Google Scholar 

  7. Casella G, Berger RL (1990) Statistical inference. Brooks/Cole Publishing, CA

    Google Scholar 

  8. Denœux T, Masson MH, Hébert PA (2005) Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153: 1–28

    MATH  Article  Google Scholar 

  9. Dubois D, Prade H (1988) Possibility theory. Plenum Press, New York

    Google Scholar 

  10. Filzmoser P, Viertl R (2004) Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59: 21–29

    MATH  Article  MathSciNet  Google Scholar 

  11. Geyer CJ, Meeden GD (2005) Fuzzy and randomized confidence intervals and p-values. Stat Sci 20(4): 358–366

    MATH  Article  MathSciNet  Google Scholar 

  12. Holena M (2001) A fuzzy logic generalization of a data mining approach. Neural Netw World 11: 595–610

    Google Scholar 

  13. Holena M (2004) Fuzzy hypotheses testing in a framework of fuzzy logic. Fuzzy Sets Syst 145: 229–252

    MATH  Article  MathSciNet  Google Scholar 

  14. Knight K (2000) Mathematical statistics. Chapman & Hall/CRC, London

    Google Scholar 

  15. Lehmann EL (1991) Testing statistical hypotheses, 2nd edn. Wiley, London

    Google Scholar 

  16. Neyman J, Pearson ES (1933) The theory of statistical hypotheses in relation to probabilities a priori. Proc Camb Phil Soc 29: 492–510

    Article  Google Scholar 

  17. Rohatgi VK, Ehsanes Saleh AK (2001) An introduction to probability and statistics, 2nd edn. Wiley, London

    Google Scholar 

  18. Taheri SM, Behboodian J (1999) Neyman–Pearson Lemma for fuzzy hypotheses testing. Metrika 49: 3–17

    MATH  Article  MathSciNet  Google Scholar 

  19. Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Sets Syst 123: 39–48

    MATH  Article  MathSciNet  Google Scholar 

  20. Taheri SM (2003) Trends in fuzzy statistics. Aust J Stat 32(3): 239–257

    MathSciNet  Google Scholar 

  21. Tanaka H, Okuda T, Asai K et al (1979) Fuzzy information and decision in a statistical model. In: Gupta MM(eds) Advances in fuzzy set theory and applications. North-Holland, Amsterdam, pp 303–320

    Google Scholar 

  22. Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca Raton, FL

    Google Scholar 

  23. Wang X, Kerre EE (2001) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118: 387–405

    MATH  Article  MathSciNet  Google Scholar 

  24. Watanabe N, Imaizumi T (1993) A fuzzy statistical test of fuzzy hypotheses. Fuzzy Sets Syst 53: 167–178

    MATH  Article  MathSciNet  Google Scholar 

  25. Yuan Y (1991) Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 43: 139–157

    MATH  Article  Google Scholar 

  26. Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–359

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Mahmoud Taheri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parchami, A., Taheri, S.M. & Mashinchi, M. Fuzzy p-value in testing fuzzy hypotheses with crisp data. Stat Papers 51, 209 (2010). https://doi.org/10.1007/s00362-008-0133-4

Download citation

Keywords

  • Testing hypotheses
  • Monotone likelihood ratio
  • Fuzzy hypothesis
  • Fuzzy p-value
  • Fuzzy significance level