Advertisement

Statistical Papers

, Volume 47, Issue 3, pp 373–392 | Cite as

Bayesian estimation and prediction for some life distributions based on record values

  • Jafar Ahmadi
  • M. Doostparast
Articles

Abstract

Some statistical data are most easily accessed in terms of record values. Examples include meteorology, hydrology and athletic events. Also, there are a number of industrial situations where experimental outcomes are a sequence of record-breaking observations. In this paper, Bayesian estimation for the two parameters of some life distributions, including Exponential, Weibull, Pareto and Burr type XII, are obtained based on upper record values. Prediction, either point or interval, for future upper record values is also presented from a Bayesian view point. Some of the non-Bayesian results can be achieved as limiting cases from our results. Numerical computations are given to illustrate the results.

Key words

Bayesian inference Beta function Conjugate prior Gamma distribution Jefferys prior Pivotal quantity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmadi, J. (2000) Record Values, Theory and Applications, Ph. D. Dissertation, Ferdowsi University of Mashhad, Iran.Google Scholar
  2. 2.
    Ahmadi, J. and Arghami, N. R. (2001) On the Fisher information in record values, Metrika 53, 195–206.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ahmadi, J. and Arghami, N. R. (2003a) Comparing the Fisher information in record values and iid observations. Statistics 37, 435–441.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ahmadi, J. and Arghami, N. R. (2003b) Nonparametric confidence and tolerance intervals based on record data, Statist. Papers, 44, 455–468.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ahmadi, J., Doostparast, M. and Parsian, A. (2005) Estimation and prediction in a two parameter exponential distribution based on k-record values under LINEX loss function, to appear in Commun. Statist. Theor. Meth. 34.Google Scholar
  6. 6.
    Ahmadi, J. and Balakrishnan, N. (2004) Confidence intervals for quantiles in terrms of record range, Statist. Probab. Lett., 68, 398–405.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ahsanullah, M. (1980) Linear prediction of record values for the two parameter exponential distribution, Ann. Inst. Statist. Math., 32, 363–368.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Al-Hussaini, E. K. and Jaheen, Z. F. (1995) Bayesian prediction bounds for the Burr type XII faliure model. Commun. Statist. Theor. Meth. 24, 1829–1842.zbMATHGoogle Scholar
  9. 9.
    Al-Hussaini, E. K. (1999) Predicting observable from a general class of distributions, J. Statist. Plann. Inference., 79, 79–91.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998) Records, John Wiley, New York.zbMATHGoogle Scholar
  11. 11.
    Arnold, B. C. and Press, S. J. (1989) Bayesian estimation and prediction for Pareto data. J. Amer. Statist. Assoc. 84, 1079–1084.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Berger, J. O. (1980) Statistical Decision Theory Foundations, Concepts and Methods Probability. Springer-Verlag, New York Heidelberg Berlin.Google Scholar
  13. 13.
    Berred A. M. (1998) Prediction of record values. Commun. Statist. Theor. Meth. 27, 2221–2240.zbMATHMathSciNetGoogle Scholar
  14. 14.
    Carlin, P. B. and Gelfand, A. E. (1993) Parametric likelihood inference for record breaking problems, Biometrika, 80, 507–515.zbMATHCrossRefGoogle Scholar
  15. 15.
    Chandler, K. N. (1952) The distribution and frequency of record values, J. Roy. Stat. Soc., B, 14, 220–228.zbMATHMathSciNetGoogle Scholar
  16. 16.
    Dunsmore, I. R. (1983) The future occurrence of records, Ann. Inst. Statist. Math., 35, 267–277.zbMATHMathSciNetGoogle Scholar
  17. 17.
    Feuerverger, A. and Hall, P. (1998) On statistical inference based on record values, Extremes, 12, 169–190.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Glick, N. (1978) Breaking records and breaking boards. Amer. Math. Monthly, 85, 2–26.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gulati, S. and Padgett, W. J. (1994) Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Commun. Statist. Theor. Meth, 23, 1259–1274.zbMATHMathSciNetGoogle Scholar
  20. 20.
    Matiz, J. L. and Lwin, T. (1989) Emprical Bayes Methods, 2nd ed. Chapman & Hall, London.Google Scholar
  21. 21.
    Nevzorov, V. (2001) Records: Mathematical Theory. Translation of Mathematical Monographs. Volume 194. Amer. Math. Soc. Providence, RI. USA.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jafar Ahmadi
    • 1
  • M. Doostparast
    • 1
  1. 1.Department of Statistics, School of Mathematical SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations