Statistical Papers

, 47:31 | Cite as

Detection of a change-point in student-t linear regression models

  • Felipe Osorio
  • Manuel Galea


In this work the Schwarz Inforamtion Criterion (SIC) is used in order to locate a change-point in linear regression models with independent errors distributed according to the Student-t distribution. The methodology is applied to data sets from the financial area.

Key words

Change-point Student-t model regression model Schwarz information criterion 


  1. 1.
    Chan Y. P. and Huang, W. T. (1997). Inferences for the linear errors-invariables with changepoint models. Journal of the American Statistical Association 92, 171–178.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, J. (1998). Testing for a change point in linear regression models. Communications in Statistics-Theory & Methods 27, 2481–2493.zbMATHGoogle Scholar
  3. 3.
    Chen, J. and Gupta, A. K. (1995). Likelihood procedure for testing change points hypothesis for multivariate gaussian model. Random Operators and Stochastic Equations 3, 235–244.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, J. and Gupta, A. K. (1997). Testing and locating variance change point with application to stock prices. Journal of the American Statistical Association 92, 739–747.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, J. and Gupta, A. K. (2001). On change point detection and estimation. Communications in Statistics-Simulation & Computation 30, 665–697.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Csörg″, M. and Horváth, L. (1997) Limit Theorems in Change-Point Analysis. Wiley, New York.Google Scholar
  7. 7.
    Duarte, A. M. and Mendes, B. V. M. (1998). Robust estimation of systematic risk in emerging stock markets. Emerging Markets Quaterly 1, 85–95.Google Scholar
  8. 8.
    Fernandez, C. and Steel, M. (1999). Multivariate student t regression models: pitfalls and inference. Biometrika 86, 153–167.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Horváth, L. (1993). The maximum likelihood method for testing changes in the parameters of normal observations. Annals of Statistics 21, 671–680.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lange, K. L.; Little, J. A. and Taylor, M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881–896.MathSciNetCrossRefGoogle Scholar
  11. 11.
    McLachlan, G. L. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New York.zbMATHGoogle Scholar
  12. 12.
    McQuarrie, A. D. R. and Tsai, C. L. (1998) Regression and Time Series Model Selection. World Scientific Publishing, Singapore.zbMATHGoogle Scholar
  13. 13.
    Osorio, F. (2001). Detección de un punto de cambio en modelos de regresión lineal t independiente, Tesis para optar al título de ingeniero en Estadística. Departamento de Estadística. Universidad de Valparaíso, Chile.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Felipe Osorio
    • 1
  • Manuel Galea
    • 2
  1. 1.Departamento de EstadísticaUniversidad de ValparaísoChile
  2. 2.Departamento de EstadísticaUniversidad de ValparaísoValparaísoChile

Personalised recommendations