Statistical Papers

, Volume 44, Issue 3, pp 315–334 | Cite as

Estimators of the multiple correlation coefficient: Local robustness and confidence intervals

  • Cristophe Croux
  • Catherine Dehon


Many robust regression estimators are defined by minimizing a measure of spread of the residuals. An accompanying R 2-measure, or multiple correlation coefficient, is then easily obtained. In this paper, local robustness properties of these robust R 2-coefficients are investigated. It is also shown how confidence intervals for the population multiple correlation coefficient can be constructed in the case of multivariate normality.

Key words

Influence function Multiple correlation coefficient Regression analysis R2-measure Robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson-Sprecher, R. A. (1994), “Model Comparison and R 2”, The American Statistician, 48, 113–117.CrossRefGoogle Scholar
  2. Croux, C., and Dehon, C. (2001), “Analyse canonique basée sur des estimateurs robustes de la matrice de covariance”, Revue de Statistique Appliquée, to appear.Google Scholar
  3. Croux, C, and Dehon, C. “The F-test for high breakdown robust regression”, in preparation.Google Scholar
  4. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986), Robust Statistics: The Approach Based on Influence Functions, New York: John Wiley and Sons.zbMATHGoogle Scholar
  5. Huber, P. J. (1981), Robust Statistics, New York: John Wiley.zbMATHCrossRefGoogle Scholar
  6. Johnson, R. A. and Wichern, D. W. (1998), Applied Multivariate Statistical Analysis, fourth edition, Prentice Hall International Editions.Google Scholar
  7. Fisher, R.A. (1928), Proceedings of the Royal Society London A 121, 654–673.CrossRefGoogle Scholar
  8. Kvalseth, T. O. (1985), “Cautionary note about R 2”, The American Statistician, 39, 279–285.CrossRefGoogle Scholar
  9. Markatou, M., and He, X. (1994), “Bounded influence and high breakdown point testing procedures in linear models,” Journal of the American Statistical Association, 89, 543–549.zbMATHCrossRefMathSciNetGoogle Scholar
  10. McKean, J. W., and Sievers, G. L. (1987), “Coefficients of determination for least absolute deviation analysis,” Statistics and Probability Letters, 5 49–54.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Romanazzi, M. (1992), “Influence in canonical correlation analysis”, Psychometrika, 57, 237–259.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Rousseeuw, P. J. (1984), “Least Median of Squares regression,” Journal of the American Statistical Association, 79, 871–880.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Rousseeuw, P. J., and Leroy, A. M. (1987), Robust Regression and Outlier Detection, New York: John Wiley.zbMATHCrossRefGoogle Scholar
  14. Rousseeuw, P. J., and Yohai, V. J. (1984), Robust regression by means of S-estimators. In: Franke, J., Härdie W., Martin, R.D. (Eds.), Robust and Nonlinear Time Series Analysis, Lecture Notes in Statistics 26, New York: Springer Verlag.Google Scholar
  15. S-Plus 2000 Guide to Statistics, Volume 1, (1999), Data Analysis Products Division, Mathsoft, Seatlle, WA.Google Scholar
  16. Yohai, V. J. (1987), “High breakdown point and high efficiency robust estimates for regression”, The Annals of Statistics, 15, 642–656.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Yohai, V. J., and Zamar, R. H. (1988), “High breakdown-point estimates of regression by means of the minimization of an efficient scale,” Journal of the American Statistical Association, 83 406–413.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Yohai, V. J., and Zamar, R. H. (1997), “Optimal locally robust M-estimates of regression,” Journal of Statistical Planning and Inference, 64, 2, 309–323.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Willet, J. B., and Singer, J. D. (1988), “Another cautionary note about R 2: its use in weighted least squares regression analysis,” The American Statistician, 42, 236–238.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Cristophe Croux
    • 1
  • Catherine Dehon
    • 1
  1. 1.ECARES, Faculté SOCO, and Institut de StatistiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations