A new class of discrete distributions with complex parameters

Abstract

In this paper we present a new family of Pearson’s discrete distributions that may be obtained when the second polynomial coefficient in the difference equation does not have real solutions. We study its most important probabilistic properties, convergence results and the problem of estimation. To conclude, we present two examples illustrating the optimum level of fit achieved in the description of real data obtained from the field of sport and compare them with some other discrete distributions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bowman, K.O., Shenton, L.R., Kastenbaum, M.A. (1991). Discrete Pearson Distributions. Oak Ridge National Laboratory. Technical Report TM-11899 Oak Ridge, Tennessee.

  2. 2.

    Dacey, M.F. (1972). A Family of Discrete Probability Distributions Defined by the Generalized Hypergeometric Series. Sankhya, Series B, 34, 243–250.

    MathSciNet  Google Scholar 

  3. 3.

    Gutiérrez-Jáimez, R. and Rodríguez-Avi, J. (1997). Family of Pearson Discrete Distributions Generated by the Univariate Hypergeometric Function 3F21, α2, α3; γ1, γ2; λ). Applied Stochastics Models and Data Analysis, 13, 115–125.

    MATH  Article  Google Scholar 

  4. 4.

    Johnson, N.L., Kotz, S. and Kemp A.W. (1992). Univariate Discrete Distributions. Wiley, New York. Second edition.

    Google Scholar 

  5. 5.

    Lesky, P. (1984). Wahrscheinlichkeitsfunktionen diskreter Verteilungen als Lösungen der Pearsonschen Differenzengleichung für die diskreten klassischen Orthogonalpolynome. Monatshefte für Mathematik, 98, 277–293.

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Ord, J.K. (1972). Families of Frecuency Distributions. Griffin, London.

    Google Scholar 

  7. 7.

    Rodríguez-Avi, J., Gutiérrez-Jáimez, R. and Conde-Sánchez, A. (1999). Discrete Distributions Generated by the Hypergeometric Function 4F3. In Applied Stochastics Models and Data Analysis, Proc. IX International Symp. Lisbon (ed H Barcelar-Nicolau, F. Costa-Nicolau and J. Jansen) 200–205. I.N.E. Portugal.

    Google Scholar 

  8. 8.

    Rodríguez-Avi, J., Gutiérrez-Jáimez, R. and Conde-Sánchez, A. (2000). Study of a Wide Class of Univariate Discrete Distributions Generated by the Hypergeometric Function 3F2. Submitted to Theory of Probability and Its Applications.

  9. 9.

    Tripathi, R.C. and Gurland, J. (1979). Some Aspects of the Kemp Families of Distributions. Communications in Statistics: Theory and Methods, 8, 9, 855–869.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Rodríguez-Avi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez-Avi, J., Conde-Sánchez, A. & Sáez-Castillo, A.J. A new class of discrete distributions with complex parameters. Statistical Papers 44, 67–88 (2003). https://doi.org/10.1007/s00362-002-0134-7

Download citation

Key words

  • Pearson’s family
  • hypergeometric function
  • discrete distributions
  • estimation