Advertisement

Vitellogenesis in spiders: first analysis of protein changes in different reproductive stages of Polybetes pythagoricus

  • S. Romero
  • A. Laino
  • F. Arrighetti
  • C. F. GarcíaEmail author
  • M. CunninghamEmail author
Original Paper
  • 46 Downloads

Abstract

Vitellogenesis represents one of the most vital processes of oviparous species during which various proteins, carbohydrates, and lipids are synthesized and stored inside the developing oocytes. Through analyzing protein changes in the midgut diverticula, hemolymph, and ovaries of females throughout the different vitellogenic stages of the spider Polybetes pythagoricus, we determined the origin of the different proteins involved in the formation of lipovitellins (LVs) along with the existence of a linkage between the hemocyanin and this vital process. An increase in the total protein content of the midgut diverticula, hemolymph, and ovary occurred throughout vitellogenesis followed by a decrease in those levels after laying. The presence of hemocyanin in egg and in LV2, as well as its accumulation in the ovary throughout the vitellogenesis process, was determined. Considering that all biologic processes depend on the correct structure and function of proteins, this study establishes, for the first time for the Order Araneae, the coexistence of three different origins of vitellogenesis-related proteins: one predominantly ovarian involving peptides of 120, 75, 46, and 30 kDa; another extraovarian one originated from the midgut diverticula and represented by a 170 kDa peptide, and a third hemolymphatic one, represented by the 67 kDa peptide.

Keywords

Spider Vitellogenesis Protein Hemocyanin Polybetes pythagoricus 

Notes

Acknowledgements

This work was supported by Grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PIP no. 0515), Agencia Nacional de Promoción Científica y Tecnológica (PICT no. 2014-2580), and UNLP Argentina (N794). L. A., A. F., G. F. and C. M. are members of CONICET, Argentina. R. S. is a CONICET scholarship fellow. The authors are grateful to Rosana del Cid for the review of the English, Mario Ramos for designing the figures, and the Laboratorio Nacional de Investigación y Servicios en Péptidos y Proteínas (LANAIS-PRO, Universidad de Buenos Aires CONICET) for the N-terminal sequence analyses. Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript.

References

  1. Abreu LA, Valle D, Manso PP, Façanha AR, Pelajo-Machado M, Masuda H, Masuda A, Vaz IJ, Lenzi H, Oliveira PL, Logullo C (2004) Proteolytic activity of Boophilus microplus Yolk pro-Cathepsin D (BYC) is coincident with cortical acidification during embryogenesis. Insect Biochem Mol Biol 34:443–449CrossRefPubMedGoogle Scholar
  2. Aguirre SA, Fruttero LL, Leyria J, Defferrari MS, Pinto PM, Settembrini BP, Rubiolo ER, Carlini CR, Canavoso LE (2011) Biochemical changes in the transition from vitellogenesis to follicular atresia in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insect Biochem Mol Biol 41:832–841CrossRefPubMedGoogle Scholar
  3. Araman SF (1979) Protein digestion and synthesis in ixodid females. In: Rodriguez IJG (ed) Recent advances in acarology, vol I. Academic Press, New York, pp 385–395CrossRefGoogle Scholar
  4. Auttarat J, Phiriyangkul P, Utarabhand P (2006) Characterization of vitellin from the ovaries of the banana shrimp Litopenaeus merguiensis. Comp Biochem Physiol Part B Biochem Mol Biol 143:27–36CrossRefGoogle Scholar
  5. Avarre JC, Michelis R, Tietz A, Lubzens E (2003) Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol Reprod 69:355–364CrossRefPubMedGoogle Scholar
  6. Avarre JC, Lubzens E, Babin PJ (2007) Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  7. Babin PJ, Bogerd J, Kooiman FP, Van Marrewijk WJ, Van der Horst DJ (1999) Apolipophorin II/I, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. J Mol Evol 49:150–160CrossRefPubMedGoogle Scholar
  8. Baird S, Kelly SM, Price NC, Jaenicke E, Meesters C, Nillius D, Decker H, Nairn J (2007) Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochim Biophys Acta 1774:1380–1394CrossRefPubMedGoogle Scholar
  9. Beenakkers AMTH, Van der Host D, Van Marrewijk WJA (1985) Insect lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res 24:19–67CrossRefPubMedGoogle Scholar
  10. Beninger PG (1984) Seasonal variations of the major lipid classes in relation to the reproductive activity of two species of clams raised in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams & Reeve). J Exp Mar Biol Ecol 79:79–90CrossRefGoogle Scholar
  11. Boldbaatar D, Umemiya-Shirafuji R, Liao M, Tanaka T, Xuan X, Fujisaki K (2010) Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. J Insect Physiol 56:1587–1598CrossRefPubMedGoogle Scholar
  12. Bownes M, Hames BD (1977) Accumulation and degradation of three major yolk proteins in Drosophila melanogaster. J Exp Zool 200:149–156CrossRefPubMedGoogle Scholar
  13. Bownes M, Ronaldson E, Mauchline D, Martinez A (1993) Regulation of vitellogenesis in Drosophila. Int J Insect Morphol Embryol 22:349–367CrossRefGoogle Scholar
  14. Brennan MD, Weiner AJ, Goralski TJ, Mahowald AP (1982) The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev Biol 89:225–236CrossRefPubMedGoogle Scholar
  15. Busselen P (1971) The presence of haemocyanins and of serum proteins in the eggs of Carcinus maenas, Eriocheir sinensis, and Portunus holsatus. Comp Biochem Physiol A Comp Physiol 38:317–328CrossRefGoogle Scholar
  16. Byrne BM, Gruber M, Ab G (1989) The evolution of egg yolk proteins. Prog Biophys Mol Biol 53:33–69CrossRefPubMedGoogle Scholar
  17. Cabrera AR, Donohue KV, Roe RM (2009) Regulation of female reproduction in mites: a unifying model for the Acari. J Insect Physiol 55:1079–1090CrossRefPubMedGoogle Scholar
  18. Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46CrossRefPubMedGoogle Scholar
  19. Chen L, Jiang H, Zhou Z, Li K, Deng GY, Liu Z (2004) Purification of vitellin from the ovary of Chinese mitten-handed crab (Eriocheir sinensis) and development of an antivitellin ELISA. Comp Biochem Physiol Part B Biochem Mol Biol 138:305–311CrossRefGoogle Scholar
  20. Chinzei Y, Chino H, Takahashi K (1983) Purification and properties of vitellogenin and vitellin from a tick, Ornithodoros moubata. J Comp Physiol 152:13–21CrossRefGoogle Scholar
  21. Choi Y, Moon M (2003) Fine Structure of the Ovarian development in the Orb-web Spider, Nephila clavata. Entomol Res 33:25–32CrossRefGoogle Scholar
  22. Coates CJ, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45:43–55CrossRefPubMedGoogle Scholar
  23. Cunningham M, Pollero RJ (1996) Characterization of lipoprotein fractions with high content of hemocyanin in the hemolymphatic plasma of Polybetes pythagoricus. J Exp Zool 274:275–280CrossRefGoogle Scholar
  24. Cunningham M, Pollero R, Gonzalez A (1994) Lipid circulation in spiders. Transport of phospholipids, free acids and triacylglycerols as the major lipid classes by a high-density lipoprotein fraction isolated from plasma of Polybetes pythagoricus. Comp Biochem Physiol Part B Biochem Mol Biol 109:333–338CrossRefGoogle Scholar
  25. Cunningham M, Garcia F, Pollero RJ (2007) Arachnid lipoproteins: comparative aspects. Comp Biochem Physiol Part C Toxicol Pharmcol 146:79–87CrossRefGoogle Scholar
  26. De Oliveira PR, Bechara GH, Denardi SE, Nunes ÉT, Camargo Mathias MI (2005) Morphological characterization of the ovary and oocytes vitellogenesis of the tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Exp Parasitol 110:146–156CrossRefPubMedGoogle Scholar
  27. Decker H, Rimke T (1998) Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 273:25889–25892CrossRefPubMedGoogle Scholar
  28. Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276:17796–17799CrossRefPubMedGoogle Scholar
  29. Dhadialla TS, Raikhel AS (1990) Biosynthesis of mosquito vitellogenin. J Biol Chem 265:9924–9933PubMedGoogle Scholar
  30. Don-Wheeler G, Engelmann F (1997) The biosynthesis and processing of vitellogenin in the fat bodies of females and males of the cockroach Leucophaea maderae. Insect Biochem Mol Biol 27:901–918CrossRefPubMedGoogle Scholar
  31. Durliat M (1984) Occurrence of plasma proteins in ovary and egg extracts from Astacus leptodactylus. Comp Biochem Physiol B Comp Biochem 78:745–753CrossRefGoogle Scholar
  32. Engelmann F (1979) Insect vitellogenin: identification, biosynthesis, and role in vitellogenesis. Adv Insect Physiol 14:49–108CrossRefGoogle Scholar
  33. Engvall E, Perlmann P (1972) Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109:129–135PubMedGoogle Scholar
  34. Fagotto F (1990) Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch Insect Biochem Physiol 14:217–235CrossRefPubMedGoogle Scholar
  35. Fielder DK, Rao KR, Fingerman M (1971) A female limited lipoprotein and the diversity of hemocyanin components in the dimorphic variant of the fiddler crab Uca pugilator, as revealed by disc electrophoresis. Comp Biochem Physiol B Comp Biochem 39:291–297CrossRefGoogle Scholar
  36. Fruttero LL, Frede S, Rubiolo ER, Canavoso LE (2011) The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes. J Insect Physiol 57:475–486CrossRefPubMedGoogle Scholar
  37. Garcia CF, Heras H (2012) Vitellogenin and lipovitellin from the prawn Macrobrachium borellii as hydrocarbon pollution biomarker. Mar Pollut Bull 64:1631–1636CrossRefPubMedGoogle Scholar
  38. Garcia CF, Cunningham M, Gonzalez-Baro MR, Garda H, Pollero R (2002) Effect of fenitrothion on the physical properties of crustacean lipoproteins. Lipids 37:673–679CrossRefPubMedGoogle Scholar
  39. Garcia CF, Cunningham M, Soulages JL, Garda HA, Pollero R (2006) Structural characterization of the lipovitellin from the shrimp Macrobrachium borellii. Comp Biochem Physiol Part B Biochem Mol Biol 145:365–370CrossRefGoogle Scholar
  40. Garcia F, Cunningham ML, Garda H, Heras H (2008) Embryo lipoproteins and yolk lipovitellin consumption during embryogenesis in Macrobrachium borellii (Crustacea: Palaemonidae). Comp Biochem Physiol Part B Biochem Mol Biol 151:317–322CrossRefGoogle Scholar
  41. García-Guerrero M, Racotta I, Villarreal Colmenares H (2003) Variation in lipid, protein, and carbohydrate content during the embryonic development of the crayfish Cherax Quadricarinatus (Decapoda: Parastacidae). J Crustac Biol 23:1–6CrossRefGoogle Scholar
  42. Gilchrist BM, Lee WL (1972) Carotenoid pigments and their possible role in reproduction in the sand crab Emerita analoga (Stimpson, 1857). Comp Biochem Physiol B Comp Biochem 42:263–294CrossRefGoogle Scholar
  43. Giorgi F, Macchi F (1980) Vitellogenesis in the stick insect Carausius morosus I. Specific protein synthesis during ovarian development. J Cell Sci 46:1–16PubMedGoogle Scholar
  44. Giorgi F, Bradley JT, Vignali R, Mizzani M (1989) An autoradiographic analysis of vitellogenin synthesis and secretion in the fat body of the stick insect Bacillus rossius. Tissue Cell 21:543–558CrossRefPubMedGoogle Scholar
  45. Giorgi F, Snigirevskaya ES, Raikhel AS (2005) The cell biology of yolk protein precursor synthesis and secretion. In: Raikhel AS, Sappington TW (eds) Progress in vitellogenesis, reproductive biology of invertebrates. Science Publishers Inc, Enfield, pp 33–68Google Scholar
  46. Glenn JD, King JG, Hillyer JF (2010) Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J Exp Biol 213:541–550CrossRefPubMedGoogle Scholar
  47. González Baró MR, Heras H, Pollero RJ (2000) Enzyme activities involved in lipid metabolism during embryonic development of Macrobrachium borellii. J Exp Zool 286:231–237CrossRefPubMedGoogle Scholar
  48. Hagedorn HH, Kunkel JG (1979) Vitellogenin and vitellin in insects. Annu Rev Entomol 24:475–505CrossRefGoogle Scholar
  49. Hall M, van Heusden MC, Soderhall K (1995) Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem Biophys Res Commun 216:939–946CrossRefPubMedGoogle Scholar
  50. Hayward A, Takahashi T, Bendena WG, Tobe SS, Hui JH (2010) Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Lett 584:1273–1278CrossRefPubMedGoogle Scholar
  51. Heras H, Garin CF, Pollero RJ (1998) Biochemical composition and energy sources during embryo development and in early juveniles of the snail Pomacea canaliculata (Mollusca: Gastropoda). J Exp Zool 280:375–393CrossRefGoogle Scholar
  52. Horigane M, Shinoda T, Honda H, Taylor D (2010) Characterization of a vitellogenin gene reveals two phase regulation of vitellogenesis by engorgement and mating in the soft tick Ornithodoros moubata (Acari: Argasidae). Insect Mol Biol 19:501–15PubMedGoogle Scholar
  53. Isaac PG, Bownes M (1982) Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Eur J Biochem 123:527–534CrossRefPubMedGoogle Scholar
  54. Izumi S, Yano K, Yamamoto Y, Takahashi SY (1994) Yolk proteins from insect eggs: structure, biosynthesis and programmed degradation during embryogenesis. J Insect Physiol 40:735–746CrossRefGoogle Scholar
  55. Jaenicke R (1999) Stability and folding of domain proteins. Prog Biophys Mol Biol 71:155–241CrossRefPubMedGoogle Scholar
  56. Jaenicke E, Decker H (2008) Kinetic properties of catecholoxidase activity of tarantula hemocyanin. FEBS J 275:1518–1528CrossRefPubMedGoogle Scholar
  57. James AM, Oliver JH (1997) Purification and partial characterization of vitellin from the black-legged tick, Ixodes scapularis. Insect Biochem Mol Biol 27:639–649CrossRefPubMedGoogle Scholar
  58. James AM, Zhu XX, Oliver JH (1997) Vitellogenin and ecdysteroid titers in Ixodes scapularis during vitellogenesis. J Parasitol 83:559–63CrossRefPubMedGoogle Scholar
  59. Kanazawa A, Koshio S (1994) Lipid nutrition of the spiny lobster Panulirus japonicus (Decapoda, Palinuridae): a review. Crustaceana 67:226–232CrossRefGoogle Scholar
  60. Kawakami Y, Goto SG, Ito K, Numata H (2009) Suppression of ovarian development and vitellogenin gene expression in the adult diapause of the two-spotted spider mite Tetranychus urticae. J Insect Physiol 55:70–77CrossRefPubMedGoogle Scholar
  61. Kempter B (1986) Intracellular hemocyanin and site of biosynthesis in the spider Eurypelma californicum. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, p 489CrossRefGoogle Scholar
  62. Kotaki T (2003) Oosorption in the stink bug, Plautia crossota stali: induction and vitellogenin dynamics. J Insect Physiol 49:105–113CrossRefPubMedGoogle Scholar
  63. Kunkel JG, Nordin JH (1985) Yolk Proteins. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and phermacology. Pergamon Press, Oxford, pp 83–111Google Scholar
  64. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  65. Laino A, Cunningham ML, Garcia F, Heras H (2009) First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins. J Insect Physiol 55:1118–1124CrossRefPubMedGoogle Scholar
  66. Laino A, Cunningham ML, Heras H, Garcia F (2011) Isolation and characterization of two vitellins from eggs of the spider Polybetes pythagoricus (Araneae: Sparassidae). Comp Biochem Physiol B Biochem Mol Biol 158:142–148CrossRefPubMedGoogle Scholar
  67. Laino A, Cunningham M, Costa FG, Garcia CF (2013) Energy sources from the eggs of the wolf spider Schizocosa malitiosa: isolation and characterization of lipovitellins. Comp Biochem Physiol B Biochem Mol Biol 165:172–180CrossRefPubMedGoogle Scholar
  68. Laino A, Cunningham M, Suarez G, Garcia CF (2015a) Identification and characterization of the lipid transport system in the tarantula Grammostola rosea. OJAS 5:9–20CrossRefGoogle Scholar
  69. Laino A, Garcia CF, Cunningham M (2015b) Protein characterization and fatty acid composition of VHDL subfraction II of the spider Polybetes pythagoricus. Biocell 39:33–40Google Scholar
  70. Laino A, Lavarias S, Suarez G, Lino A, Cunningham M (2015c) Characterization of phenoloxidase activity from spider Polybetes pythagoricus hemocyanin. J Exp Zool 323:547–555Google Scholar
  71. Laino A, Mattoni C, Ojanguren-Affilastro A, Cunningham M, Fernando Garcia C (2015d) Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs. Comp Biochem Physiol B Biochem Mol Biol 190:27–36CrossRefPubMedGoogle Scholar
  72. Leyria J, Fruttero LL, Aguirre SA, Canavoso LE (2014) Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): focus on lipid metabolism. Arch Insect Biochem Physiol 87:148–163CrossRefPubMedGoogle Scholar
  73. Li H, Zhang S (2017) Functions of vitellogenin in eggs. In: Kloc M (ed) Oocytes: maternal information and functions, pp 389–401Google Scholar
  74. Liu X, Nordin JH (1998) Localization of the proenzyme form of the vitellin-processing protease in Blattella germanica by affinity-purified antibodies. Arch Insect Biochem Physiol 38:109–118CrossRefPubMedGoogle Scholar
  75. Logullo C, Vaz Ida S, Sorgine MH, Paiva-Silva GO, Faria FS, Zingali RB, De Lima MF, Abreu L, Oliveira EF, Alves EW, Masuda H, Gonzales JC, Masuda A, Oliveira PL (1998) Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 116(Pt 6):525–532CrossRefPubMedGoogle Scholar
  76. Logullo C, Moraes J, Dansa-Petretski M, Vaz I Jr, Masuda A, Sorgine M, Braz G, Masuda H, Oliveira P (2003) Binding and storage of heme by vitellin from the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 32:1805–1811CrossRefGoogle Scholar
  77. Lowry OH, Rosenbrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  78. Marangos C, Ramos L, Oliva M (1988) Variations in protein levels in the hemolymph, hepatopancreas and ovary of Penaeus schmitti during ovarian maturation (Crustacea, Decapoda, Peneidae). Arch Int Physiol Biochim 96:179–190PubMedGoogle Scholar
  79. Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Springer, BerlinCrossRefGoogle Scholar
  80. Markl J, Schmid R, Czichos-Tiedt S, Linzen B (1976) Haemocyanins in spiders, III. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe Seylers Z Physiol Chem 357:1713–1725CrossRefPubMedGoogle Scholar
  81. McMahon BR, Wilkens JL, Smith PJS (1997) Invertebrate circulatory systems. In: Dantzler WH (ed) Handbook of physiology section 13: comparative physiology. American Physiological Society, Oxford University Press, New York, pp 931–1008Google Scholar
  82. Melo AC, Valle D, Machado EA, Salerno AP, Paiva-Silva GO, Cunha ESNL, de Souza W, Masuda H (2000) Synthesis of vitellogenin by the follicle cells of Rhodnius prolixus. Insect Biochem Mol Biol 30:549–557CrossRefPubMedGoogle Scholar
  83. Oliveira PL, Gondim KC, Guedes DM, Masuda H (1986) Uptake of yolk proteins in Rhodnius prolixus. J Insect Physiol 32:859–866CrossRefGoogle Scholar
  84. Pateraki LE, Stratakis E (2000) Synthesis and organization of vitellogenin and vitellin molecules from the land crab Potamon potamios. Comp Biochem Physiol B Biochem Mol Biol 125:53–61CrossRefPubMedGoogle Scholar
  85. Postlethwait JH, Giorgi F (1985) Vitellogenesis in insects. In: Browder LW (ed) Developmental biology, a comprehensive synthesis, pp 85–136Google Scholar
  86. Pourie G, Trabalon M (2003) The role of 20-hydroxyecdysone on the control of spider vitellogenesis. Gen Comp Endocrinol 131:250–257CrossRefPubMedGoogle Scholar
  87. Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37:217–251CrossRefPubMedGoogle Scholar
  88. Ramírez Rodríguez PB, Rosario Cruz R, Domínguez García DI, Hernández Gutiérrez R, Lagunes Quintanilla RE, Ortuño Sahagún D, González Castillo C, Gutiérrez Ortega A, Herrera Rodríguez SE, Vallejo Cardona A, Martínez Velázquez M (2016) Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through an immunoproteomic approach. Exp Parasitol 170:227–235CrossRefPubMedGoogle Scholar
  89. Riciluca KC, Silva PI (2012) Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results Immunol 2:66–71CrossRefPubMedPubMedCentralGoogle Scholar
  90. Romero SM, Laino A, Arrighetti F, Cunningham M, Garcia CF (2018) First study on lipid dynamics during the female reproductive cycle of Polybetes pythagoricus (Araneae: Sparassidae). Can J Zool 96:847–858CrossRefGoogle Scholar
  91. Rosell R, Coons L (1991) Purification and partial characterization of vitellin from the eggs of the hard tick, Dermacentor variabilis. Insect Biochem 21:871–885CrossRefGoogle Scholar
  92. Rosell R, Coons LB (1992) The role of the fat body, midgut and ovary in vitellogenin production and vitellogenesis in the female tick, Dermacentor variabilis. Int J Parasitol 22:341–349CrossRefPubMedGoogle Scholar
  93. Salerno AP, Dansa-Petretski M, Silva-Neto MAC, Coelho HSL, Masuda H (2002) Rhodnius prolixus vitellin is composed of three different populations: comparison with vitellogenin. Insect Biochem Mol Biol 32:709–717CrossRefPubMedGoogle Scholar
  94. Sanggaard KW, Dyrlund TF, Bechsgaard JS, Scavenius C, Wang T, Bilde T, Enghild JJ (2016) The spider hemolymph clot proteome reveals high concentrations of hemocyanin and von Willebrand factor-like proteins. Biochim Biophys Acta 1864:233–241CrossRefPubMedGoogle Scholar
  95. Santos R, Mariano AC, Rosas-Oliveira R, Pascarelli B, Machado EA, Meyer-Fernandes JR, Gondim KC (2008) Carbohydrate accumulation and utilization by oocytes of Rhodnius prolixus. Arch Insect Biochem Physiol 67:55–62CrossRefPubMedGoogle Scholar
  96. Santos R, Rosas-Oliveira R, Saraiva FB, Majerowicz D, Gondim KC (2011) Lipid accumulation and utilization by oocytes and eggs of Rhodnius prolixus. Arch Insect Biochem Physiol 77:1–16CrossRefPubMedGoogle Scholar
  97. Sappington TW (2000) The major yolk proteins of higher Diptera are homologs of a class of minor yolk proteins in lepidoptera. J Mol Evol 55:470–475CrossRefGoogle Scholar
  98. Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28:277–300CrossRefPubMedGoogle Scholar
  99. Serrano-Pinto V, Landais I, Ogliastro MH, Gutierrez-Ayala M, Mejia-Ruiz H, Villarreal-Colmenares H, Garcia-Gasca A, Vazquez-Boucard C (2004) Vitellogenin mRNA expression in Cherax quadricarinatus during secondary vitellogenic at first maturation females. Mol Reprod Dev 69:17–21CrossRefPubMedGoogle Scholar
  100. Shaalan MG, Soliman DE, Abdou MA, Khater EI, Abd Othman A, El-Latif Y, Shehata MG (2017) Molecular characterization of vitellogenesis in anautogenous Culex pipiens pipiens L. mosquitoes. J Mosq Res 4:05–11Google Scholar
  101. Shanbaky N, Mansour N, Helmy N (1990) Changes in total hemolymph and ovarian proteins during oogenesis en Argas (Argas) hermanni (Acari: Argasidae). J Med Entomol 27:982–985CrossRefGoogle Scholar
  102. Silveira AB, Castro-Santos J, Sennaa R, Logullo C, Fialhoc E, Silva-Netoa MAC (2006) Tick vitellin is dephosphorylated by a protein tyrosine phosphatase during egg development: effect of dephosphorylation on VT proteolysis. Insect Biochem Mol Biol 36:200–209CrossRefPubMedGoogle Scholar
  103. Sonenshine DE, Roe RM (2013) Biology of ticks. Oxford University Press, New YorkGoogle Scholar
  104. Subramoniam T (1991) Yolk utilization and esterase activity in the mole crab Emerita asiatica (Milne Edwards). In: Wenner AM, Kuris A (eds) Crustacean egg production crustacean issues. Balkema Press, Roterdam, pp 19–30Google Scholar
  105. Subramoniam T (2011) Mechanisms and control of vitellogenesis in crustaceans. Fish Sci 77:1–21CrossRefGoogle Scholar
  106. Sugita H, Sekiguchi K (1979) Protein components in the perivitelline fluid of the embryo of the horseshoe crab, Tachypleus tridentatus. Dev Biol 73:183–192CrossRefPubMedGoogle Scholar
  107. Tatchell RJ (1971) Electrophoretic studies on the proteins of the hemolymph saliva and eggs of the cattle tick Boophilus microplus. Insect Biochem 1:47–55CrossRefGoogle Scholar
  108. Taub-Montemayo TE, Rankin MA (1997) Regulation of vitellogenin synthesis and uptake in the boll weevil, Anthonornus grandis. Physiol Entomol 22:261–268CrossRefGoogle Scholar
  109. Taylor D, Chinzei Y, Miura K, Ando K (1991) Vitellogenin synthesis, processing and hormonal regulation in the tick, Ornithodoros parkeri (Acari:Argasidae). Insect Biochem 21:723–733CrossRefGoogle Scholar
  110. Tellam RL, Kemp D, Riding G, Briscoe S, Smith D, Sharp P, Irving D, Willadsen P (2002) Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet Parasitol 103:141–156CrossRefPubMedGoogle Scholar
  111. Terwilliger N, Dumler K (2001) Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 204:1013–1020PubMedGoogle Scholar
  112. Thompson DM, Khalil SM, Jeffers LA, Sonenshine DE, Mitchell RD, Osgood CJ, Michael Roe R (2007) Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. Insect Biochem Mol Biol 37:363–374CrossRefPubMedGoogle Scholar
  113. Trabalon M, Pourie G, Hartmann N (1998) Relationships among cannibalism, contact signals, ovarian development and ecdysteroid levels in Tegenaria atrica (Araneae, Agelenidae). Insect Biochem Mol Biol 28:751–758CrossRefGoogle Scholar
  114. Trabalon M, Ruhland F, Laino A, Cunningham M, Garcia F (2017) Embryonic and post-embryonic development inside wolf spiders’ egg sac with special emphasis on the vitellus. J Comp Physiol 188:211–224CrossRefGoogle Scholar
  115. Tseng DY, Chen YN, Liu KF, Kou GH, Lo CF, Kuo CM (2002) Hepatopancreas and ovary are sites of vitellogenin synthesis as determined from partial cDNA encoding of vitellogenin in the marine shrimp, Penaeus vannamei. Invert Reprod Dev 42:137–143CrossRefGoogle Scholar
  116. Tsukimura B (2001) Crustacean vitellogenesis: its role in oocyte development. Am Zool 41:465–476Google Scholar
  117. Tufail M, Takeda M (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54:1447–1458CrossRefPubMedGoogle Scholar
  118. Tufail M, Raikhel AS, Takeda M (2005) Biosynthesis and processing of insect vitellogenins. In: Raikhel AS, Sappington TW (eds) Progress in vitellogenesis, reproductive biology of invertebrates. Science Publishers Inc, Enfield, pp 1–32Google Scholar
  119. Tufail M, Nagaba Y, Elgendy AM, Takeda M (2014) Regulation of vitellogenin genes in insects. Entomol Sci 17:269–282CrossRefGoogle Scholar
  120. Tyler C, Sumpter J (1996) Oocyte growth and development in teleost. Rev Fish Biol Fish 6:287–318CrossRefGoogle Scholar
  121. Valle D (1993) Vitellogenesis in insects and other groups: a review. Mem Inst Oswaldo Cruz 88:1–26CrossRefPubMedGoogle Scholar
  122. van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81CrossRefPubMedGoogle Scholar
  123. van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566CrossRefPubMedGoogle Scholar
  124. Vazquez Boucard CG, Levy P, Ceccaldi HJ, Brogrend CH (2002) Developmental changes in concentrations of vitellin, vitellogenin, and lipids in hemolymph, hepatopancreas, and ovaries from different ovarian stages of Indian white prawn Fenneropenaeus indicus. J Exp Mar Biol Ecol 281:63–75CrossRefGoogle Scholar
  125. Wache S, Terwilliger NB, Terwilliger RC (1988) Hemocyanin structure changes during early development of the crab Cancer productus. Comp Biochem Physiol 247:23–32Google Scholar
  126. Walker A, Ando S, Smith GD, Lee RF (2006) The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 143:201–208CrossRefPubMedGoogle Scholar
  127. Warburg MR, Elias R, Rosenberg M (2002) The hepatopancreas of Scorpio maurus fuscus; seasonal changes in mass and water content as related to gender and oogenesis. J Zool (Lond) 256:479–488CrossRefGoogle Scholar
  128. Weers PMM, Van Der Horst DJ, Van Marrewijk WJA, Van Den Eijnden M, Van Doom JMV, Beenakkers AMT (1992) Biosynthesis and secretion of insect lipoprotein. J Lipid Res 33:485–491PubMedGoogle Scholar
  129. Wilder MN, Subramoniam T, Aida K (2002) Yolk proteins of Crustacea. In: Raikhel AS, Sappington TW (eds) Reproductive biology of invertebrates volume XII—recent progress in vitellogenesis. Science Publishers Inc., Enfield, pp 131–174Google Scholar
  130. Wilder MN, Okumura T, Tsutsui N (2010) Reproductive mechanisms in Crustacea focusing on selected prawn species: vitellogenin structure, processing and synthetic control. ABSM 3:73–110Google Scholar
  131. Wolf G, Decleir W (1979) A study of embryonic copper proteins and hemocyanins in Sepia officinalis L. Biol Jb Dodonaea 47:130–136Google Scholar
  132. Yamashita O, Indrasith LS (1988) Metabolic fates of yolk proteins during embryogenesis in arthropods. Dev Growth Differ 30:337–346CrossRefGoogle Scholar
  133. Yang F, Xu HT, Dai ZM, Yang WJ (2005) Molecular characterization and expression analysis of vitellogenin in the marine crab Portunus trituberculatus. Comp Biochem Physiol B Biochem Mol Biol 142:456–464CrossRefPubMedGoogle Scholar
  134. Yang C, Pan H, Liu Y, Zhou X (2015) Stably expressed housekeeping genes across developmental stages in the two-spotted spider mite, Tetranychus urticae. PLoS One 10:e0120833CrossRefPubMedPubMedCentralGoogle Scholar
  135. Yepiz-Plascencia G, Vargas-Albores F, Higuera-Ciapara I (2000) Penaeid shrimp hemolymph lipoproteins. Aquaculture 191:177–189CrossRefGoogle Scholar
  136. Zhai QH, Postlethwait JH, Bodley JW (1984) Vitellogenin synthesis in the lady beetle Coccinella septempunctata. Insect Biochem 14:299–305CrossRefGoogle Scholar
  137. Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L (2015) Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev Comp Immunol 49:96–102CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLPLa PlataArgentina
  2. 2.CONICET-Museo Argentino de Ciencias NaturalesCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations