Advertisement

Journal of Comparative Physiology B

, Volume 188, Issue 6, pp 977–990 | Cite as

Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina

  • Rodrigo Gómez Alés
  • Juan Carlos Acosta
  • Vanesa Astudillo
  • Mariela Córdoba
  • Graciela Mirta Blanco
  • Donald Miles
Original Paper

Abstract

Locomotion is relevant to the ecology of reptiles because of its presumed influence on an organism’s Darwinian fitness. Moreover, in ectothermic species, physiological performance capacity is affected by body temperature. We analyzed two components of locomotor performance in three species of lizards, Phymaturus extrilidus, Liolaemus parvus, and Liolaemus ruibali, in the Puna environment of Argentina. First, we estimated the thermal sensitivity of locomotion by measuring sprint speed at four different body temperatures. We included two measures of sprint speed: initial velocity and long sprint for sustained runs. Based on these data, we calculated the optimal temperature for performance and the optimal performance breadth. We also estimated endurance capacity at a single temperature. Maximum sprint speed for L. parvus was greater than L. ruibali and P. extrilidus in both initial velocity and long sprint. In contrast, L. parvus exhibited lower levels of endurance than L. ruibali and P. extrilidus. However, endurance in L. ruibali exceeded that of P. extrilidus. The species differed in the optimal temperature for the initial velocity with the lowest for L. ruibali (31.8 °C) followed by P. extrilidus (33.25 °C) and then L. parvus (36.25 °C). The optimal temperature for long sprint varied between 32 and 36 °C for all species. We found that all species attained maximum performance at body temperatures commonly experienced during daily activity, which was higher than the thermal quality of the environment. We found evidence for thermal sensitivity in locomotor performance in these species. However, we also show that the broad thermal breadth of performance suggests that the lizards are capable of sustaining near optimal levels of locomotor performance at ambient temperatures that would appear to be suboptimal. Thus, this lizard assemblage is capable of coping with the highly variable climatic conditions in the Puna region of Argentina.

Keywords

Sprint speed Endurance Thermal optimum Phymaturus extrilidus Liolaemus parvus Liolaemus ruibali 

Notes

Acknowledgements

We thank Arturo Curatola and Andres Calderon for permission to work in Reserva “Don Carmelo”; Nora Ibargüengoytía for lend us the track to trials sprint speed and Alyson Nuñez for assisting us with the English version. Thanks also to Secretaría de Medio Ambiente y Dirección de Conservación y Áreas Protegidas, Provincia de San Juan for research permits. Financial support was received from Beca CICITCA (Res. 1767/14-R, RGA) and project CICITCA 881 (JCA). This research was partially supported by the Universidad Nacional de San Juan and Consejo Nacional de Investigaciones Científicas y Técnicas (beca doctoral CONICET, Res. 2358/14, RGA). Miles was supported by NSF Grant (EF128428).

Compliance with ethical standards

Conflict of interest

The authors confirm there are no known conflicts of interest associated with this publication.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was not required.

References

  1. Abdala CS, Quinteros AS (2014) Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina: Actualización taxonómica y sistemática de Liolaemidae. Cuad Herpetol 28:55–82Google Scholar
  2. Acosta JC, Blanco GM, Gómez Alés R, Acosta R, Piaggio Kokot L, Victorica AE, Villavicencio HJ, Fava GA (2018) Los Reptiles de San Juan. Editorial Brujas, CórdobaGoogle Scholar
  3. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. Angilletta MJ, Hill T, Robson MA (2002) Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol 27:199–204CrossRefGoogle Scholar
  5. Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361CrossRefGoogle Scholar
  6. Artacho P, Saravia J, Perret S, Bartheld JL, Le Galliard JF (2017) Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J Therm Biol 63:78–87CrossRefGoogle Scholar
  7. Beal MS, Lattanzio MS, Miles DB (2014) Differences in the thermal physiology of adult Yarrow’s spiny lizards (Sceloporus jarrovii) in relation to sex and body size. Ecol Evol 4:4220–4229PubMedPubMedCentralGoogle Scholar
  8. Bennett AF (1990) Thermal dependence of locomotor capacity. Am J Physiol Regul Integr Comp Physiol 259:253–258CrossRefGoogle Scholar
  9. Bonine KE, Garland T Jr (1999) Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hind limb length. J Zool 248:255–265CrossRefGoogle Scholar
  10. Bonino MF, Azócar DLM, Tulli MJ, Abdala CS, Perotti MG, Cruz FB (2011) Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J Exp Zool A Ecol Gen Physiol 315:495–503CrossRefGoogle Scholar
  11. Bonino MF, Azócar DLM, Schulte JA, Abdala CS, Cruz FB (2015) Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Zoology 118:281–290CrossRefGoogle Scholar
  12. Buckley LB (2010) The range implications of lizard traits in changing environments. Global Ecol Biogeogr 19:452–464Google Scholar
  13. Byers J, Hebets E, Podos J (2010) Female mate choice based upon male motor performance. Anim Behav 79:771–778CrossRefGoogle Scholar
  14. Cabezas Cartes F, Kubisch EL, Ibargüengoytía NR (2014) Consequences of volcanic ash deposition on the locomotor performance of the Phymaturus spectabilis lizard from Patagonia, Argentina. J Exp Zool A Ecol Gen Physiol 321:164–172CrossRefGoogle Scholar
  15. Cabrera AL (1994) Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: regiones fitogeográficas Argentinas. ACME, Buenos AiresGoogle Scholar
  16. Calsbeek R, Cox RM (2010) Experimentally assessing the relative importance of predation and competition as agents of selection. Nature 465:613–616CrossRefGoogle Scholar
  17. Calsbeek R, Irschick DJ (2007) The quick and the dead: correlational selection on morphology, performance, and habitat use in island lizards. Evolution 61:2493–2503CrossRefGoogle Scholar
  18. Chandler CR (1995) Practical considerations in the use of simultaneous inference for multiple tests. Anim Behav 49:524–527CrossRefGoogle Scholar
  19. Corbalán V, Debandi G (2013) Basking behaviour in two sympatric herbivorous lizards (Liolaemidae: Phymaturus) from the Payunia volcanic region of Argentina. J Nat Hist 23:56–63Google Scholar
  20. Crowley SR (1985) Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia 66:219–225CrossRefGoogle Scholar
  21. Cruz FB, Fitzgerald LA, Espinoza RE, Schulte IIJA (2005) The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: lessons from a clade of South American lizards. J Evol Biol 18:1559–1574CrossRefGoogle Scholar
  22. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672CrossRefGoogle Scholar
  23. Díaz Gómez JM (2009) Historical biogeography of Phymaturus (Iguania: Liolaemidae) from Andean and Patagonian South America. Zool Scr 28:1–7CrossRefGoogle Scholar
  24. Fernández JB, Ibargüengoytía NR (2012) Does acclimation at higher temperatures affect the locomotor performance of one of the southernmost reptiles in the world? Acta Herpetol 7:281–296Google Scholar
  25. Fernández JB, Smith J, Scolaro A, Ibargüengoytía NR (2011) Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J Therm Biol 36:15–22CrossRefGoogle Scholar
  26. Fuller PO, Higham TE, Clark AJ (2011) Posture, speed, and habitat structure: three-dimensional hindlimb kinematics of two species of padless geckos. Zoology 114:104–112CrossRefGoogle Scholar
  27. Gaby MJ, Besson AA, Bezzina CN, Caldwell AJ, Cosgrove S, Cree A, Hare KM (2011) Thermal dependence of locomotor performance in two cool-temperate lizards. J Comp Physiol A 197:869–875CrossRefGoogle Scholar
  28. Garland T Jr, Hankins E, Huey RB (1990) Locomotor capacity and social dominance in male lizards. Funct Ecol 4:243–250CrossRefGoogle Scholar
  29. Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, MaldenCrossRefGoogle Scholar
  30. Gifford ME, Herrel A, Mahler DL (2008) The evolution of locomotor morphology, performance, and anti-predator behaviour among populations of Leiocephalus lizards from the Dominican Republic. Biol J Linn Soc 93:445–456CrossRefGoogle Scholar
  31. Gilbert AL, Miles DB (2017) Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc R Soc B 284:20170536CrossRefGoogle Scholar
  32. Gómez Alés R, Acosta JC, Laspiur A (2017) Thermal biology in two syntopic lizards, Phymaturus extrilidus and Liolaemus parvus, in the Puna region of Argentina. J Therm Biol 68:73–82CrossRefGoogle Scholar
  33. Goodman BA, Miles DB, Schwarzkopf L (2008) Life on the rocks: habitat use drives morphological and performance evolution in lizards. Ecology 89:3462–3471CrossRefGoogle Scholar
  34. Hertz PE, Huey RB, Nevo E (1983) Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37:1075–1084CrossRefGoogle Scholar
  35. Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:1098–1115CrossRefGoogle Scholar
  36. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135CrossRefGoogle Scholar
  37. Huey RB, Slatkin M (1976) Cost and benefits of lizard thermoregulation. Q Rev Biol 51:363–384CrossRefGoogle Scholar
  38. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366CrossRefGoogle Scholar
  39. Huey RB, Bennett AF, John Alder H, Nagy KA (1984) Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim Behav 32:41–50CrossRefGoogle Scholar
  40. Huey RB, Dunham AE, Overall KL, Newman RA (1990) Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami. Physiol Zool 63:845–872CrossRefGoogle Scholar
  41. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci 276:1939–1948CrossRefGoogle Scholar
  42. Husak JF, Fox SF, Lovern MB, Bussche RA (2006) Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60:2122–2130CrossRefGoogle Scholar
  43. Ibargüengoytía NR, Renner ML, Boretto JM, Piantoni C, Cussac VE (2007) Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphib Reptil 28:235–246CrossRefGoogle Scholar
  44. Ibargüengoytía NR, Cabezas Cartes F, Boretto JM, Piantoni C, Kubisch EL, Fernández MS, Lara Resendiz RA, Méndez De La Cruz FR, Scolaro A, Sinervo B (2016) Volcanic ash from Puyehue-Cordón Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol J Linn Soc 118:842–851CrossRefGoogle Scholar
  45. Irschick DJ, Meyers JJ (2007) An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153:489–499CrossRefGoogle Scholar
  46. Jacobson ER, Whitford WG (1970) The effect of acclimation on physiological responses to temperature in the snakes, Thamnophis proximus and Natrix rhombifera. Comp Biochem Physiol 35:439–449CrossRefGoogle Scholar
  47. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249CrossRefGoogle Scholar
  48. Jayne BC, Bennett AF (1990) Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44:1204–1229CrossRefGoogle Scholar
  49. Kaufmann JS, Bennett AF (1989) The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol Zool 62:1047–1058CrossRefGoogle Scholar
  50. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350CrossRefGoogle Scholar
  51. Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174:755–768PubMedGoogle Scholar
  52. Kohlsdorf T, Navas C (2012) Evolution of form and function: morphophysiological relationships and locomotor performance in Tropidurine lizards. J Zool 288:41–49CrossRefGoogle Scholar
  53. Kubisch EL, Fernández JB, Ibargüengoytía NR (2011) Is locomotor performance optimized at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J Therm Biol 36:328–333CrossRefGoogle Scholar
  54. Kubisch EL, Fernández JB, Ibargüengoytía NR (2016) Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J Comp Physiol B 186:243–253CrossRefGoogle Scholar
  55. Lauder GV, Reilly SM (1991) Behavior, morphology, and muscle function-the physiological bases of behavioral evolution. Am Zool 31:1041Google Scholar
  56. Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432:502–505CrossRefGoogle Scholar
  57. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  58. Lobo F, Espinoza RE, Sanabria EA, Quiroga LB (2012) A new Phymaturus (Iguania: Liolaemidae) from the southern extreme of the Argentine Puna. Copeia 1:12–22CrossRefGoogle Scholar
  59. Logan ML, Huynh RK, Precious RA, Calsbeek RG (2013) The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Glob Change Biol 19(10):3093–3102CrossRefGoogle Scholar
  60. Macrini TE, Irschick DJ (1998) An intraspecific analysis of trade-offs in sprinting performance in a West Indian lizard species (Anolis lineatopus). Biol J Linn Soc 63:579–591CrossRefGoogle Scholar
  61. Márquez J, Ripoll Y, Dalmasso A, Ariza M, Jordan M (2014) Árboles Nativos de la provincia de San Juan. Universidad Nacional de San Juan, San JuanGoogle Scholar
  62. Marsh RL, Bennett AF (1986) Thermal dependence of sprint performance of the lizard Sceloporus occidentalis. J Exp Biol 126:79–87PubMedGoogle Scholar
  63. Martín J (1996) Effects of recent feeding on locomotor performance of juvenile Psammodromus algirus lizards. Funct Ecol 10:390–395CrossRefGoogle Scholar
  64. Martín TL, Huey RB (2008) Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:102–118CrossRefGoogle Scholar
  65. Martínez Carretero E (1995) La Puna Argentina: Delimitación general y división en distritos florísticos. Bol Soc Argent Bot 31:27–40Google Scholar
  66. McElroy MT (2014) Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura). Physiol Biochem Zool 87:222–230CrossRefGoogle Scholar
  67. Miles DB (1994) Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change. Am Zool 34:422–436CrossRefGoogle Scholar
  68. Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75Google Scholar
  69. Miles DB, Sinervo B, Frankino WA (2000) Reproductive burden, locomotor performance, and the cost of reproduction in free ranging lizards. Evolution 54:1386–1395CrossRefGoogle Scholar
  70. Miles DB, Snell HL, Snell HM (2001) Intrapopulation variation in endurance of Galapagos lava lizards (Microlophus albemarlensis): evidence for an interaction between natural and sexual selection. Evol Ecol Res 3:795–804Google Scholar
  71. Miles DB, Calsbeek R, Sinervo B (2007a) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51:548–554CrossRefGoogle Scholar
  72. Miles DB, Losos JB, Irschick DJ (2007b) Morphology, performance, and foraging mode. In: Reilly LB, McBrayer LB, Miles DB (eds) Lizard ecology: the evolutionary consequences of foraging mode. Cambridge University Press, Cambridge, pp 49–93CrossRefGoogle Scholar
  73. Pérez Tris J, Díaz JA, Tellería JL (2004) Loss of body mass under predation risk: cost of antipredatory behaviour or adaptive fit-for-escape? Anim Behav 67:511–521CrossRefGoogle Scholar
  74. Pietrek AG, Walker RS, Novaro AJ (2009) Susceptibility of lizards to predation under two levels of vegetative cover. J Arid Environ 73:574–577CrossRefGoogle Scholar
  75. Pinch FC, Claussen DL (2003) Effects of temperature and slope on the sprint speed and stamina of the Eastern Fence Lizard, Sceloporus undulatus. J Herpetol 37:671–679CrossRefGoogle Scholar
  76. Pough FH, Gans C (1982) The vocabulary of reptilian thermoregulation. Biol Reptil 12:17–23Google Scholar
  77. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  78. Robson MA, Miles DB (2000) Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Funct Ecol 14:338–344CrossRefGoogle Scholar
  79. Roig F, Martínez Carretero E (1998) La vegetación puneña de la provincia de Mendoza, Argentina. Phitocoenologia 28:565–608CrossRefGoogle Scholar
  80. Roig Juñent S, Flores GE, Mattoni C (2003) Consideraciones biogeográficas de la Precordillera (Argentina), con base en artrópodos epigeos. In: Morrone JJ, Llorente Bousquets J (eds) Una perspectiva latinoamericana de la Biogeografía. Las prensas de Ciencias, Facultad de Ciencias. Universidad Nacional de México, México, pp 275–288Google Scholar
  81. Schulte JA, Losos JB, Cruz FB, Núñez H (2004) The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae: Liolaemini). J Evol Biol 17:408–420CrossRefGoogle Scholar
  82. Sheth SN, Angert AL (2014) The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68:2917–2931CrossRefGoogle Scholar
  83. Sokal RR, Rohlf FJ (1969) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, San FranciscoGoogle Scholar
  84. Sorci G, Swallow JG, Garland T Jr, Clobert J (1995) Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol Zool 68:698–720CrossRefGoogle Scholar
  85. Strobbe F, McPeek MA, De Block M, De Meester L, Stoks R (2009) Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J Evol Biol 22:1172–1182CrossRefGoogle Scholar
  86. Tepler S, Mach K, Denny M (2011) Preference versus performance: body temperature of the intertidal snail Chlorostoma funebralis. Biol Bull 220:107–117CrossRefGoogle Scholar
  87. Tsuji JS, Huey RB, Van Berkum FH, Garland T Jr, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252CrossRefGoogle Scholar
  88. Tulli MJ, Cruz FB, Herrel A, Vanhooydonck B, Abdala V (2009) The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112:379–392CrossRefGoogle Scholar
  89. Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215:774–784CrossRefGoogle Scholar
  90. van Berkum FH (1988) Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am Nat 132:327–343CrossRefGoogle Scholar
  91. Vanhooydonck B, Van Damme R (1999) Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol Ecol Res 1:785–805Google Scholar
  92. Vanhooydonck B, Van Damme R, Aerts P (2001) Speed and stamina trade-off in lacertid lizards. Evolution 55:1040–1048CrossRefGoogle Scholar
  93. Vanhooydonck B, Measey J, Edwards S, Makhubo B, Tolley KA, Herrel A (2015) The effects of substratum on locomotor performance in lacertid lizards. Biol J Linn Soc 115:869–881CrossRefGoogle Scholar
  94. Villavicencio HJ, Acosta JC, Cánovas MG (2005) Dieta de Liolaemus ruibali Donoso Barros (Iguania: liolaeminae) en la reserva de usos múltiples Don Carmelo, San Juan, Argentina. Multequina 14:47–52Google Scholar
  95. Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  96. Wu Q, Dang W, Hu YC, Lu HL (2018) Altitude influences thermal ecology and thermal sensitivity of locomotor performance in a toad-headed lizard. J Therm Biol 71:136–141CrossRefGoogle Scholar
  97. Yuan FL, Pickett EJ, Bonebrake TC (2016) Cooler performance breadth in a viviparous skink relative to its oviparous congener. J Therm Biol 61:106–114CrossRefGoogle Scholar
  98. Zajitschek SR, Zajitschek F, Miles DB, Clobert J (2012) The effect of coloration and temperature on sprint performance in male and female wall lizards. Biol J Linn Soc 107:573–582CrossRefGoogle Scholar
  99. Zamora Camacho FJ, Reguera S, Rubiño Hispán MV, Moreno Rueda G (2014) Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol 41:509–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de San JuanSan JuanArgentina
  2. 2.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)San JuanArgentina
  3. 3.CIGEOBIO-CONICET, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de San JuanSan JuanArgentina
  4. 4.Department of Biological Sciences, and Ohio Center for Ecological and Evolutionary StudiesOhio UniversityAthensUSA

Personalised recommendations