Advertisement

Journal of Comparative Physiology B

, Volume 188, Issue 1, pp 27–36 | Cite as

Temperature adaptation of lipids in diapausing Ostrinia nubilalis: an experimental study to distinguish environmental versus endogenous controls

  • Elvira L. VukašinovićEmail author
  • David W. Pond
  • Gordana Grubor-Lajšić
  • M. Roger Worland
  • Danijela Kojić
  • Jelena Purać
  • Željko D. Popović
  • Duško P. Blagojević
Original Paper

Abstract

Larvae of the European corn borer (Ostrinia nubilalis Hubn.) were cold acclimated during different phases of diapause to determine if changes in the fatty acid composition lipids occur as part of a programmed diapause strategy, or as a response to low temperatures during winter. Cold acclimation of fifth instar larvae of O. nubilalis during diapause had modest effects further on the readjustments in fatty acid composition of triacylglycerols and phospholipids. Overall, FA unsaturation (UFAs/SFAs ratio) was stable, with the exception of the triacylglycerols fraction after exposure to −3 and −10 °C in mid-diapause (MD) when it significantly increased. Differential scanning calorimetry (DSC) was used to examine phase transitions of total body lipid of cold-acclimated larvae in diapause. Thermal analysis indicated that changes in the melt transition temperatures of whole body total lipids were subtle, but consistent with the modest changes in the level of FA unsaturation observed. We conclude that lipid rearrangements are a function of the endogenous “diapause program” rather than a direct effect of low temperatures, which proved to have limited impact on lipid changes in diapausing larvae of O. nubilalis.

Keywords

Cold acclimation Fatty acid composition Ostrinia nubilalis Lipid melt transition temperatures Phospholipid Triacylglycerol 

Abbreviations

DSC

Differential scanning calorimetry

FA

Fatty acid

SFA

Saturated fatty acid

UFA

Unsaturated fatty acid

MUFA

Monounsaturated fatty acid

PUFA

Polyunsaturated fatty acid

UFAs/SFAs ratio

Ratio of unsaturated/saturated FAs

FAME

Fatty acid methyl ester

GPEtn/GPChol ratio

Ratio of glycerophosphoethanolamine/glycerophosphocholine

Notes

Acknowledgements

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant no. 173014., project entitled “Molecular mechanisms of redox signalling in homeostasis: adaptation and pathology”. This publication is a contribution to the ECOSYSTEMS Programme of the British Antarctic Survey, UK.

References

  1. Bale JS, Hayward SA (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994CrossRefPubMedGoogle Scholar
  2. Bennett VA, Pruitt NL, Lee RE (1997) Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. J Comp Physiol B 167:249–255CrossRefGoogle Scholar
  3. Christie WW (1982) Lipid analysis, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  4. Cossins AR (1994) Homeoviscous adaption and its functional significance. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 63–75Google Scholar
  5. Cossins AR, Sinensky M (1984) Adaptations of membranes to temperature, pressure and exogenous lipids. In: Shinitzky M (ed) Physiology of membrane fluidity. CRC Press, Boca Raton, pp 1–20Google Scholar
  6. Denlinger DL (1991) Relationship between cold-hardiness and diapause. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York, pp 174–198CrossRefGoogle Scholar
  7. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122CrossRefPubMedGoogle Scholar
  8. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  9. Grubor-Lajsic G, Block W, Palanacki V, Glumac S (1991) Cold hardiness parameters of overwintering diapause larvae of Ostrinia nubilalis in Vojvodina, Yugoslavia. Cryo-Letters 12:177–182Google Scholar
  10. Grubor-Lajsic G, Block W, Worland R (1992) Comparison of the cold hardiness of two larval Lepidoptera (Noctuidae). Physiol Entomol 17:148–152CrossRefGoogle Scholar
  11. Hazel JR (1989) Cold adaptation in ectotherms: regulation of membrane function and cellular metabolism. advance in comparative and environmental. Physiology 4:1–50CrossRefGoogle Scholar
  12. Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42CrossRefPubMedGoogle Scholar
  13. Hinkle ED, Wiersma W, Jurs GS (1994) Applied statistics for behavioral sciences, 3rd edn. Houghton Mifflin Company, BostonGoogle Scholar
  14. Hochachka PW, Somer GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford, p 560Google Scholar
  15. Hodková M, Šimek P, Zahradníčková H, Nováková O (1999) Seasonal changes in the phospholipid composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochem Mol Biol 29:367–376CrossRefGoogle Scholar
  16. Jovanovic-Galovic A, Blagojevic DP, Grubor-Lajsic G, Worland MR, Spasic MB (2007) Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hbn.). Arch Insect Biochem Physiol 64:111–119CrossRefPubMedGoogle Scholar
  17. Jovanović-Galović A, Blagojević DP, Grubor-Lajšić G, Worland R, Spasić MB (2004) Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hubn.): diapause and metamorphosis. Arch Insect Biochem Physiol 55:79–89CrossRefPubMedGoogle Scholar
  18. Kojic D, Spasojevic I, Mojovic M, Blagojevic D, Worland MR, Grubor-Lajsic G, Spasic MB (2009) Potential role of hydrogen peroxide and melanin in the cold hardiness of Ostrinia nubilalis (Lepidoptera: Pyralidae). Eur J Entomol 106:451–454CrossRefGoogle Scholar
  19. Kojić D, Purać J, Popović ŽD, Pamer E, Grubor-Lajšić G (2010) Importance of the body water management for winter cold survival of the European corn borer Ostrinia nubilalis Hübn. (Lepidoptera: Pyralidae). Biotechnol Biotechnol Equip 24:648–654CrossRefGoogle Scholar
  20. Kostal V, Simek P (1998) Changes in fatty acid composition of phospholipids and triacylglycerides after cold acclimation of an aestivating insect prepupa. J Comp Physiol B 168:453–460CrossRefGoogle Scholar
  21. Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127CrossRefPubMedGoogle Scholar
  22. Koštál V (2010) Cell structural modifications in insects at low temperatures. In: Denlinger DL, Lee RE Jr (eds) Low temperature biology of insects. Cambridge University Press, CambridgeGoogle Scholar
  23. Koštál V, Berková P, Šimek P (2003) Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comp Biochem Physiol B Biochem Mol Biol 135(3):407–419CrossRefPubMedGoogle Scholar
  24. Koštál V, Šimek P (2000) Overwintering strategy in Pyrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments. J Insect Physiol 46:1321–1329CrossRefPubMedGoogle Scholar
  25. Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperature, Chapman, New York, pp 17–47CrossRefGoogle Scholar
  26. MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67:2405–2424CrossRefPubMedGoogle Scholar
  27. Marshall KE, Thomas RH, Roxin Á, Chen EKY, Brown JCL, Gillies ER, Sinclair BJ (2014) Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect. J Exp Biol 217:1580–1587CrossRefPubMedGoogle Scholar
  28. Michaud MR, Denlinger DL (2006) Oleic acid is elevated in cell membrane during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 52:1073–1082CrossRefPubMedGoogle Scholar
  29. Pond DW, Fallick EA, Stevens JC, Morrison JD, Dixon RD (2008) Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: fatty acid and stable isotope evidence. Deep Sea Res Part I Oceanogr Res Pap 55:1718–1726CrossRefGoogle Scholar
  30. Popović ŽD, Subotić A, Nikolić TV, Radojičić R, Blagojević DP, Grubor-Lajšić G, Koštál V (2015) Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comp Biochem Physiol Part B 186:1–7CrossRefGoogle Scholar
  31. Purać J, Pond WD, Grubor-Lajšić G, Kojić D, Blagojević PD, Worland RM, Clark SM (2011) Cold hardening induces transfer of fatty acids between polar and nonpolar lipid pools in the Arctic collembollan Megaphorura arctica. Physiol Entomol 36:135–140CrossRefGoogle Scholar
  32. Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA 104:11130–11137CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rozsypal J, Koštál V, Berková P, Zahradníčková H, Šimek P (2014) Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. J Therm Biol 45:124–133CrossRefPubMedGoogle Scholar
  34. Sinensky M (1974) Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525CrossRefPubMedPubMedCentralGoogle Scholar
  35. Stanic B, Jovanovic-Galovic A, Blagojevic DP, Grubor-Lajsic G, Worland R, Spasic MB (2004) Cold hardiness in Ostrinia nubilalis (Lepidoptera: Pyralidae): glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. Eur J Entomol 101:459–466CrossRefGoogle Scholar
  36. Storey KB, Storey JM (1991) Biochemistry of cryoprotectants. In: Lee RE Jr, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York, pp 64–93CrossRefGoogle Scholar
  37. Tammariello SP, Denlinger DL (1998) G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect Biochem Molec Biol 28:83–89CrossRefGoogle Scholar
  38. Tomčala A, Tollarová M, Overgaard J, Šimek P, Koštál V (2006) Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. J Exp Biol 209:4102–4114CrossRefPubMedGoogle Scholar
  39. Tsvetkova NM, Quinn PJ (1994) Compatible solutes modulate membrane lipid phase behavior. In: Cossins AR (ed) Temperature adaptation of biological membranes, Portland Press, London, pp 49–62Google Scholar
  40. Vukašinović E, Pond WD, Worland MR, Kojić D, Purać J, Blagojević PD, Grubor-Lajšić G (2013) Diapause induces changes in the composition and biophysical properties of lipids in larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Comp Biochem Physiol Part B 165:219–225CrossRefGoogle Scholar
  41. Vukašinović E, Pond WD, Worland MR, Kojić D, Purać J, Popović DŽ, Grubor-Lajšić G (2015) Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae). Comp Biochem Physiol Part B 184:36–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Elvira L. Vukašinović
    • 1
    Email author
  • David W. Pond
    • 2
  • Gordana Grubor-Lajšić
    • 1
  • M. Roger Worland
    • 3
  • Danijela Kojić
    • 1
  • Jelena Purać
    • 1
  • Željko D. Popović
    • 1
  • Duško P. Blagojević
    • 4
  1. 1.Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Scottish Association for Marine ScienceObanScotland, UK
  3. 3.British Antarctic SurveyCambridgeUK
  4. 4.Department of Physiology, Institute for Biological ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations