Advertisement

Journal of Comparative Physiology B

, Volume 188, Issue 1, pp 177–193 | Cite as

Comparative physiology of vocal musculature in two odontocetes, the bottlenose dolphin (Tursiops truncatus) and the harbor porpoise (Phocoena phocoena)

  • Nicole M. Thometz
  • Jennifer L. Dearolf
  • Robin C. Dunkin
  • Dawn P. Noren
  • Marla M. Holt
  • Olivia C. Sims
  • Brandon C. Cathey
  • Terrie M. Williams
Original Paper

Abstract

The mechanism by which odontocetes produce sound is unique among mammals. To gain insight into the physiological properties that support sound production in toothed whales, we examined myoglobin content ([Mb]), non-bicarbonate buffering capacity (β), fiber-type profiles, and myosin heavy chain expression of vocal musculature in two odontocetes: the bottlenose dolphin (Tursiops truncatus; n = 4) and the harbor porpoise (Phocoena phocoena; n = 5). Both species use the same anatomical structures to produce sound, but differ markedly in their vocal repertoires. Tursiops produce both broadband clicks and tonal whistles, while Phocoena only produce higher frequency clicks. Specific muscles examined in this study included: (1) the nasal musculature around the phonic lips on the right (RNM) and left (LNM) sides of the head, (2) the palatopharyngeal sphincter (PPS), which surrounds the larynx and aids in pressurizing cranial air spaces, and (3) the genioglossus complex (GGC), a group of muscles positioned ventrally within the head. Overall, vocal muscles had significantly lower [Mb] and β than locomotor muscles from the same species. The PPS was predominately composed of small diameter slow-twitch fibers. Fiber-type and myosin heavy chain analyses revealed that the GGC was comprised largely of fast-twitch fibers (Tursiops: 88.6%, Phocoena: 79.7%) and had the highest β of all vocal muscles. Notably, there was a significant difference in [Mb] between the RNM and LNM in Tursiops, but not Phocoena. Our results reveal shared physiological characteristics of individual vocal muscles across species that enhance our understanding of key functional roles, as well as species-specific differences which appear to reflect differences in vocal capacities.

Keywords

Aerobic metabolism Anaerobic capacity Myoglobin Fiber-type Myosin heavy chain Sound production 

Notes

Acknowledgements

We thank Joy Reidenberg, Ted Cranford, Bill McLellan, Ann Pabst, Mario Muscedere, Sarah McHugh, Megan Murphy, and Adrienne White, as well as the Long Marine Lab Marine Mammal Stranding Network, the Marine Mammal Center, the UNCW Stranding Network, and the Southwest Fisheries Science Center. This research was conducted under NMFS Scientific Research Permit #19590 to TMW, and NOAA Parts Authorization 110314 to RCD.

Compliance with ethical standards

Funding

This research was supported by the Office of Naval Research (N000141410460 to TMW and RCD; and N0001416IP00023, N0001415IP00039, and N0001414IP20045 to DPN and MMH).

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with live animals performed by any of the authors.

References

  1. Amundin M, Andersen SH (1983) Bony nares air pressure and nasal plug muscle activity during click production in the harbour porpoise, Phocoena phocoena, and the bottlenosed dolphin, Tursiops truncatus. J Exp Biol 105:275–282Google Scholar
  2. Au WWL, Kastelein RA, Benoit-Bird KJ et al (2006) Acoustic radiation from the head of echolocating harbor porpoises (Phocoena phocoena). J Exp Biol 209:2726–2733. doi: 10.1242/jeb.02306 CrossRefPubMedGoogle Scholar
  3. Blessing MH (1972) Studies on the concentration of myoglobin in the sea-cow and porpoise. Comp Biochem Physiol Part A 41:475–480. doi: 10.1016/0300-9629(72)90005-9 CrossRefGoogle Scholar
  4. Bradbury JW, Vehrencamp SL (1998) Sound production. Princ. Anim. Commun. Sinauer Associates, Inc., Sunderland, pp 75–112Google Scholar
  5. Burns JM, Castellini MA (1996) Physiological and behavioral determinants of the aerobic dive limit in Weddell seal (Leptonychotes weddellii) Pups. J Comp Physiol B 166:473–483. doi: 10.1007/BF02338290 CrossRefGoogle Scholar
  6. Cartwright R, Newton C, West KM et al (2016) Tracking the development of muscular myoglobin stores in mysticete calves. PLoS One 11:1–18. doi: 10.1371/journal.pone.0145893 CrossRefGoogle Scholar
  7. Castellini MA, Somero GN (1981) Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. J Comp Physiol B 143:191–198Google Scholar
  8. Castellini MA, Kooyman GL, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165:181–194PubMedGoogle Scholar
  9. Cobb MA, Schutt WA, Petrie JL, Hermanson JW (1994) Neonatal development of the diaphragm of the horse, Equus caballus. Anat Rec 238:311–316CrossRefPubMedGoogle Scholar
  10. Cotten PB, Piscitelli MA, McLellan WA et al (2008) The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 269:1520–1538. doi: 10.1002/jmor.10668 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cranford TW, Amundin M, Norris KS (1996) Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J Morphol 228:223–285. doi: 10.1002/(SICI)1097-4687(199606)228:3<223::AID-JMOR1>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  12. Cranford TW, Elsberry WR, Van Bonn WG et al (2011) Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources. J Exp Mar Bio Ecol 407:81–96. doi: 10.1016/j.jembe.2011.07.010 CrossRefGoogle Scholar
  13. Dearolf JL (2002) Morphology and development of the diaphragm of bottlenose dolphins (Tursiops trunatus). Cornell University, IthacaGoogle Scholar
  14. Dearolf JL (2003) Diaphragm muscle development in bottlenose dolphins (Tursiops truncatus). J Morphol 256:79–88. doi: 10.1002/jmor.10077 CrossRefPubMedGoogle Scholar
  15. Dearolf JL, McLellan WA, Dillaman RM et al (2000) Precocial development of axial locomotor muscle in bottlenose dolphins (Tursiops truncatus). J Morphol 244:203–215. doi: 10.1002/(SICI)1097-4687(200006)244:3<203::AID-JMOR5>3.0.CO;2-V CrossRefPubMedGoogle Scholar
  16. Dolar MLL, Suarez P, Ponganis PJ, Kooyman GL (1999) Myoglobin in pelagic small cetaceans. J Exp Biol 202:227–236PubMedGoogle Scholar
  17. Dormer KJ (1979) Mechanism of sound production and air recycling in delphinids: cineradiographic evidence. J Acoust Soc Am 65:229–239. doi: 10.1121/1.382240 CrossRefGoogle Scholar
  18. Elemans CPH, Mead AF, Rome LC, Goller F (2008) Superfast vocal muscles control song production in songbirds. PLoS One 3:6–11. doi: 10.1371/journal.pone.0002581 CrossRefGoogle Scholar
  19. Elemans CPH, Mead AF, Jakobsen L, Ratcliffe JM (2011) Superfast muscles set maximum call rate in echolocating bats. Science 333:1885–1888. doi: 10.1126/science.1207309 CrossRefPubMedGoogle Scholar
  20. Gillooly JF, Ophir AG (2010) The energetic basis of acoustic communication. Proc R Soc B 277:1325–1331. doi: 10.1098/rspb.2009.2134 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Green RF, Ridgway SH, Evans WE (1980) Functional and descriptive anatomy of the bottlenosed dolphin nasolaryngeal system with special reference to the musculature associated with sound production. Anim. Sonar Syst. Springer US, pp 199–228Google Scholar
  22. Harrison LK, Davis RW (1998) Heterogeneity of myoglobin in cetacean swimming muscles. In: The world marine mammal science conference, Monaco, 20–24 January 1998, p 60Google Scholar
  23. Hermanson J, Evans H (1993) The muscular system. Miller’s Anat. Dog. W.B. Saunders, Philadelphia, pp 258–384Google Scholar
  24. Hermanson JW, Hurley KJ (1990) Architectural and histochemical analysis of the biceps brachii muscle of the horse. Acta Anat (Basel) 137:146–156. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  25. Hildebrand JA (2009) Anthropogenic and natural sources of ambient noise in the ocean. Mar Ecol Prog Ser 395:5–20. doi: 10.3354/meps08353 CrossRefGoogle Scholar
  26. Holt MM, Noren DP, Dunkin RC, Williams TM (2015) Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments. J Exp Biol 2:1–8. doi: 10.1242/jeb.122424 Google Scholar
  27. Houser DS, Finneran J, Carder D et al (2004) Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy. J Exp Biol 207:3657–3665. doi: 10.1242/jeb.01207 CrossRefPubMedGoogle Scholar
  28. Hückstädt LA, Tift MS, Riet-Sapriza F et al (2016) Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia). J Exp Biol 219:2320–2330. doi: 10.1242/jeb.138677 CrossRefPubMedGoogle Scholar
  29. Huggenberger S, Rauschmann MA, Oelschläger HHA (2008) Functional morphology of the hyolaryngeal complex of the harbor porpoise (Phocoena phocoena): implications for its role in sound production and respiration. Anat Rec 291:1262–1270. doi: 10.1002/ar.20745 CrossRefGoogle Scholar
  30. Huggenberger S, Rauschmann MA, Vogl TJ, Oelschläger HHA (2009) Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena L.). Anat Rec 292:902–920. doi: 10.1002/ar.20854 CrossRefGoogle Scholar
  31. Kanatous SB, Dimichele LV, Cowan DF, Davis RW (1999) High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol 86:1247–1256CrossRefPubMedGoogle Scholar
  32. Kielhorn CE, Dillaman RM, Kinsey ST et al (2013) Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 274:663–675. doi: 10.1002/jmor.20124 CrossRefPubMedGoogle Scholar
  33. Kooyman GL (1989) Diverse divers. Springer, New YorkCrossRefGoogle Scholar
  34. Kuhn M, Weston S, Wing J, Forester J (2013) The contrast packageGoogle Scholar
  35. LaFramboise WA, Daood MJ, Guthrie RD et al (1991) Emergence of the mature myosin phenotype in the rat diaphragm muscle. Dev Biol 144:1–15CrossRefPubMedGoogle Scholar
  36. Lammers MO, Castellote M (2009) The beluga whale produces two pulses to form its sonar signal. Biol Lett 5:297–301. doi: 10.1098/rsbl.2008.0782 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lawrence B, Schevill WE (1956) The functional anatomy of the delphinid nose. Bull Mus Comp Zool 114:103–182Google Scholar
  38. Lawrence B, Schevill WE (1965) Gular musculature in delphinids. Bull Mus Comp Zool Harvard Univ 133:1–65Google Scholar
  39. Liste F, Palacio J, Ribes V et al (2006) Anatomic and computed tomographic atlas of the head of the newborn bottlenose dolphin (Tursiops truncatus). Vet Radiol Ultrasound 47:453–460. doi: 10.1111/j.1740-8261.2006.00167.x CrossRefPubMedGoogle Scholar
  40. Liu Y, Jia S, Hou Y (2009) Effects of ovariectomy on rat genioglossal muscle contractile properties and fiber-type distribution. Angle Orthod 79:509–514. doi: 10.2319/031608-149.1 CrossRefPubMedGoogle Scholar
  41. Madsen PT, Wisniewska DM, Beedholm K (2010) Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena). J Exp Biol 213:3105–3110. doi: 10.1242/jeb.044420 CrossRefPubMedGoogle Scholar
  42. Madsen PT, Lammers M, Wisniewska D, Beedholm K (2013) Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. J Exp Biol 216:4091–4102. doi: 10.1242/jeb.091306 CrossRefPubMedGoogle Scholar
  43. Marsh RL, Taigen TL (1987) Properties enhancing aerobic capacity of calling muscles in gray tree frogs Hyla versicolor. Am J Physiol 252:R786–R793CrossRefPubMedGoogle Scholar
  44. Mead JG (1975) Anatomy of the external nasal passages and facial complex in the Delphinidae (Mammalia: Cetacea). Smithson Contrib to Zool 1–72. doi: 10.5479/si.00810282.207
  45. Melcón ML, Cummins AJ, Kerosky SM et al (2012) Blue whales respond to anthropogenic noise. PLoS One 7:1–6. doi: 10.1371/journal.pone.0032681 CrossRefGoogle Scholar
  46. Mu L, Sanders I (2002) Muscle fiber-type distribution pattern in the human cricopharyngeus muscle. Dysphagia 17:87–96. doi: 10.1007/s00455-001-0108-2 CrossRefPubMedGoogle Scholar
  47. Noren SR (2004) Buffering capacity of the locomotor muscle in cetaceans: correlates with postpartum development, dive duration, and swim performance. Mar Mammal Sci 20:808–822. doi: 10.1111/j.1748-7692.2004.tb01194.x CrossRefGoogle Scholar
  48. Noren SR, Williams TM (2000) Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp Biochem Physiol A 126:181–191. doi: 10.1016/S1095-6433(00)00182-3 CrossRefGoogle Scholar
  49. Noren SR, Williams TM, Pabst DA et al (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol B 171:127–134. doi: 10.1007/s003600000161
  50. Noren SR, Lacave G, Wells RS, Williams TM (2002) The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity. J Zool Lond 258:105–113. doi: 10.1017/S0952836902001243 CrossRefGoogle Scholar
  51. Noren DP, Holt MM, Dunkin RC, Williams TM (2013) The metabolic cost of communicative sound production in bottlenose dolphins (Tursiops truncatus). J Exp Biol 216:1624–1629. doi: 10.1242/jeb.083212 CrossRefPubMedGoogle Scholar
  52. Noren SR, Noren DP, Gaydos JK (2014) Living in the fast lane: rapid development of the locomotor muscle in immature harbor porpoises (Phocoena phocoena). J Comp Physiol B 184:1065–1076. doi: 10.1007/s00360-014-0854-8 CrossRefPubMedGoogle Scholar
  53. Ophir AG, Schrader SB, Gillooly JF (2010) Energetic cost of calling: general constraints and species-specific differences. J Evol Biol 23:1564–1569. doi: 10.1111/j.1420-9101.2010.02005.x CrossRefPubMedGoogle Scholar
  54. Pattengale PK, Holloszy JO (1967) Augmentation by a program of skeletal muscle myoglobin of treadmill running. Am J Physiol 213:783–785PubMedGoogle Scholar
  55. Petrof BJ, Kelly AM, Rubinstein NA, Pack AI (1992) Effect of hypothyroidism on myosin heavy chain expression in rat pharyngeal dilator muscles. J Appl Physiol 73:179–187CrossRefPubMedGoogle Scholar
  56. Piscitelli MA, McLellan WA, Rommel SA et al (2010) Lung size and thoracic morphology in shallow- and deep-diving cetaceans. J Morphol 271:654–673. doi: 10.1002/jmor.10823 PubMedGoogle Scholar
  57. Ponganis PJ (2011) Diving mammals. Compr Physiol 1:517–535. doi: 10.1002/cphy.c091003 Google Scholar
  58. Ponganis PJ, Pierce RW (1978) Muscle metabolic profiles and fiber-type composition in some marine mammals. Comp Biochem Physiol 59:7–10Google Scholar
  59. Ponganis PJ, Costello ML, Starke LN et al (1997) Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respir Physiol 109:73–80CrossRefPubMedGoogle Scholar
  60. Reynafarje B (1963) Simplified method for the determination of myoglobin. J Lab Clin Med 61:138–145PubMedGoogle Scholar
  61. Richmond JP, Burns JM, Rea LD (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions (Eumetopias jubatus). J Comp Physiol B 176:535–545. doi: 10.1007/s00360-006-0076-9 CrossRefPubMedGoogle Scholar
  62. Ridgway SH, Carder DA, Green RF et al (1980) Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In: Busnel R, Fish JF (eds) Anim. Sonar Syst. Plenum Press, New York, pp 239–250CrossRefGoogle Scholar
  63. Ridgway SH, Carder DA, Kamolnick T et al (2001) Hearing and whistling in the deep sea: depth influences whistle spectra but does not attenuate hearing by white whales (Delphinapterus leucas) (Odontoceti, Cetacea). J Exp Biol 204:3829–3841PubMedGoogle Scholar
  64. Ridgway S, Samuelson Dibble D, Van Alstyne K, Price D (2015) On doing two things at once: dolphin brain and nose coordinate sonar clicks, buzzes and emotional squeals with social sounds during fish capture. J Exp Biol 218:3987–3995. doi: 10.1242/jeb.130559 CrossRefPubMedGoogle Scholar
  65. Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Ann Rev Physiol 68:193–221. doi: 10.1146/annurev.physiol.68.040104.105418 CrossRefGoogle Scholar
  66. Rome LC, Syme DA, Hollingworth S et al (1996) The whistle and the rattle: the design of sound producing muscles. Proc Natl Acad Sci USA 93:8095–8100. doi: 10.1073/pnas.93.15.8095 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Saigusa H, Niimi S, Yamashita K et al (2001) Morphological and histochemical studies of the genioglossus muscle. Ann Otol Rhinol Laryngol 110:779–784CrossRefPubMedGoogle Scholar
  68. Sassoon DA, Gray GE, Kelley DB (1987) Androgen regulation of muscle fiber type in the sexually dimorphic larynx of Xenopus laevis. J Neurosci 7:3198–3206PubMedGoogle Scholar
  69. Schiaffino S, Gorza L, Ausoni S, Bottinelli R, Reggiani C, Larson L, Edstrom L, Gundersen K, Lomo T (1990) Muscle fiber types expressing different myosin heavy chain isoforms. Their functional properties and adaptive capacity. In: Schiaffino S, Gorza L, Ausoni S (eds) The dynamic state of muscle fibers: proceedings of the international symposium. Walter de Gruyter, Berlin, pp 329–341Google Scholar
  70. Schrøder HD, Reske-Nielsen E (1983) Fiber types in the striated urethral and anal sphincters. Acta Neuropathol 60:278–282CrossRefPubMedGoogle Scholar
  71. Shero MR, Andrews RD, Lestyk KC, Burns JM (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 182:425–436. doi: 10.1007/s00360-011-0619-6 CrossRefPubMedGoogle Scholar
  72. Smith KK (1989) Histological demonstration of muscle spindles in the tongue of the rat. Arch Oral Biol 34:529–534. doi: 10.1016/0003-9969(89)90091-5 CrossRefPubMedGoogle Scholar
  73. Sutlive TG, McClung JR, Goldberg SJ (1999) Whole-muscle and motor-unit contractile properties of the styloglossus muscle in rat. J Neurophysiol 82:584–592CrossRefPubMedGoogle Scholar
  74. Sutlive TG, Shall MS, McClung JR, Goldberg SJ (2000) Contractile properties of the tongue’s genioglossus muscle and motor units in the rat. Muscle Nerve 23:416–425Google Scholar
  75. Turner DL, Butler PJ (1988) The aerobic capacity of locomotory muscles in the tufted duck, Aythya fuligula. J Exp Biol 135:445–460PubMedGoogle Scholar
  76. Tyack PL, Miller EH (2002) Vocal anatomy, acoustic communication and echolocation. In: Hoelzel AR (ed) Mar. Mammal Biol. an Evol. Approach, 1st edn. Blackwell Science Ltd, Malden, pp 142–184Google Scholar
  77. Velten BP, Dillaman RM, Kinsey ST et al (2013) Novel locomotor muscle design in extreme deep-diving whales. J Exp Biol 216:1862–1871. doi: 10.1242/jeb.081323 CrossRefPubMedGoogle Scholar
  78. Villegas-Amtmann S, Costa DP (2010) Oxygen stores plasticity linked to foraging behaviour and pregnancy in a diving predator, the Galapagos sea lion. Funct Ecol 24:785–795. doi: 10.1111/j.1365-2435.2009.01685.x CrossRefGoogle Scholar
  79. Villegas-Amtmann S, Atkinson S, Paras-Garcia A, Costa DP (2012) Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion. Comp Biochem Physiol A 162:413–420. doi: 10.1016/j.cbpa.2012.04.019 CrossRefGoogle Scholar
  80. Weilgart LS (2007) The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can J Zool 85:1091–1116. doi: 10.1139/Z07-101 CrossRefGoogle Scholar
  81. Weise MJ, Costa DP (2007) Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 210:278–289. doi: 10.1242/jeb.02643 CrossRefPubMedGoogle Scholar
  82. Werth AJ (2007) Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec 290:546–568. doi: 10.1002/ar.20538 CrossRefGoogle Scholar
  83. Williams TM (1999) The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philos Trans R Soc Lond B 354:193–201CrossRefGoogle Scholar
  84. Williams TM, Friedl WA, Haun JE (1993) The physiology of bottlenose dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate concentration during exercise. J Exp Biol 179:31–46PubMedGoogle Scholar
  85. Williams CT, Sheriff MJ, Schmutz JA et al (2011a) Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living arctic hibernator. J Comp Physiol B 181:1101–1109. doi: 10.1007/s00360-011-0593-z CrossRefPubMedGoogle Scholar
  86. Williams TM, Noren SR, Glenn M (2011b) Extreme physiological adaptations as predictors of climate-change sensitivity in the narwhal, Monodon monoceros. Mar Mammal Sci 27:334–349. doi: 10.1111/j.1748-7692.2010.00408.x CrossRefGoogle Scholar
  87. Yeates LC, Williams TM, Fink TL (2007) Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). J Exp Biol 210:1960–1970. doi: 10.1242/jeb.02767 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nicole M. Thometz
    • 1
    • 2
  • Jennifer L. Dearolf
    • 3
  • Robin C. Dunkin
    • 2
  • Dawn P. Noren
    • 4
  • Marla M. Holt
    • 4
  • Olivia C. Sims
    • 3
  • Brandon C. Cathey
    • 3
  • Terrie M. Williams
    • 2
  1. 1.Department of BiologyUniversity of San FranciscoSan FranciscoUSA
  2. 2.Department of Ecology and Evolutionary BiologyLong Marine Laboratory, University of California at Santa CruzSanta CruzUSA
  3. 3.Biology DepartmentHendrix CollegeConwayUSA
  4. 4.Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleUSA

Personalised recommendations