Journal of Comparative Physiology B

, Volume 187, Issue 8, pp 1107–1116 | Cite as

Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants

  • Andrew D. Nguyen
  • Kerri DeNovellis
  • Skyler Resendez
  • Jeremy D. Pustilnik
  • Nicholas J. Gotelli
  • Joel D. Parker
  • Sara Helms Cahan
Original Paper

Abstract

Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.

Keywords

Ants Heat-shock response Desiccation Heat-shock proteins Starvation Thermal tolerance 

Abbreviations

KD

Knockdown

HSR

Heat-shock response

Hsp

Heat-shock protein gene

hsp70

Heat-shock protein 70 gene

hsp40

Heat-shock protein 40 gene

Gapdh

Glyceraldehyde-3-phosphate dehydrogenase

Ef1β

Elongation factor 1 Beta

RT-qPCR

Real-time quantitative polymerase chain reaction

GLM

Generalized linear model

ANOVA

Analysis of variance

LT50

Median lethal time

Notes

Acknowledgements

We thank Lori Stevens for technical support and two anonymous reviewers for constructive comments and suggestions that significantly improved the manuscript. This work was supported by a Broadening Participation REU supplement to NSF-DEB Grant #1136644.

Compliance with ethical standards

Conflict of interest

No competing interest declared.

References

  1. Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134–141. doi:10.1007/s004420000494 CrossRefPubMedGoogle Scholar
  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496 CrossRefPubMedGoogle Scholar
  3. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753. doi:10.1111/j.1466-8238.2007.00359.x CrossRefGoogle Scholar
  4. Benoit JB, Lopez-Martinez G, Elnitsky MA et al (2009) Dehydration-induced cross tolerance of Belgicaantarcticalarvae to cold and heat is facilitated by trehalose accumulation. Comparative biochemistry and physiology part A: molecular and integrative. Physiology 152:518–523. doi:10.1016/j.cbpa.2008.12.009 Google Scholar
  5. Benoit JB, Lopez-Martinez G, Phillips ZP et al (2010) Heat shock proteins contribute to mosquito dehydration tolerance. J Insect Physiol 56:151–156. doi:10.1016/j.jinsphys.2009.09.012 CrossRefPubMedGoogle Scholar
  6. Bettencourt BR, Hogan CC, Nimali M, Drohan BW (2008) Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol 6:5. doi:10.1186/1741-7007-6-5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bewick S, Stuble KL, Lessard J-P, Dunn RR, Adler FR, Sanders NJ (2014) Predicting future coexistence in a north American ant community. Ecology Evolution 4:1804–1819. doi:10.1002/ece3.1048 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355. doi:10.1111/j.1469-185X.2008.00046.x CrossRefPubMedGoogle Scholar
  9. Bubliy OA, Kristensen TN, Kellermann V, Loeschcke V (2012a) Humidity affects genetic architecture of heat resistance in Drosophila melanogaster. J Evol Biol 25:1180–1188. doi:10.1111/j.1420-9101.2012.02506.x CrossRefPubMedGoogle Scholar
  10. Bubliy OA, Kristensen TN, Kellermann V, Loeschcke V (2012b) Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct Ecol 26:245–253. doi:10.1111/j.1365-2435.2011.01928.x CrossRefGoogle Scholar
  11. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC et al (2013) How does climate change cause extinction? Proc R Soc Lond B Biol Sci 280:20121890. doi:10.1098/rspb.2012.1890 CrossRefGoogle Scholar
  12. Cavicchi S, Guerra D, Torre VL, Huey RB (1995) Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory. Evol Int J org Evol 49:676–684. doi:10.2307/2410321 CrossRefGoogle Scholar
  13. Chahal J, Dev K (2013) Shifting clinal patterns of stress resistance traits in Drosophila ananassae. Evol Ecol27:333–351.doi:10.1007/s10682-012-9599-6
  14. Clark RE, King JR (2012) The ant, Aphaenogaster picea, benefits from plant Elaiosomes when insect prey is scarce. Environ Entomol 41:1405–1408. doi:10.1603/EN12131 CrossRefPubMedGoogle Scholar
  15. Clusella-Trullas S, Blackburn TM, Chown SL et al (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751. doi:10.1086/660021 CrossRefPubMedGoogle Scholar
  16. Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140. doi:10.1016/0968-0004(91)90055-Z CrossRefPubMedGoogle Scholar
  17. Da Lage J-L, Capy P, David J-R (1989) Starvation and desiccation tolerance in Drosophila melanogaster adults: Effects of environmental temperature. J Insect Physiol 35:453–457. doi:10.1016/0022-1910(89)90051-6 CrossRefGoogle Scholar
  18. Demarco BB, Cognato AI (2015) Phylogenetic analysis of Aphaenogaster supports the resurrection of Novomessor (Hymenoptera: Formicidae). Ann Entomol Soc Am sau013. doi:10.1093/aesa/sau013
  19. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–6672. doi:10.1073/pnas.0709472105 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Diamond SE, Sorger DM, Hulcr J et al (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob Change Biol 18:448–456.doi:10.1111/j.1365-2486.2011.02542.x
  21. Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492. doi:10.1126/science.1237123 CrossRefPubMedGoogle Scholar
  22. Duffy GA, Coetzee BW, Janion-Scheepers C, Chown SL (2015) Microclimate-based macrophysiology: implications for insects in a warming world. Curr Opin Insect Sci 11:84–89. doi:10.1016/j.cois.2015.09.013 CrossRefPubMedGoogle Scholar
  23. Dunn RR, Agosti D, Andersen AN et al (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333. doi:10.1111/j.1461-0248.2009.01291.x CrossRefPubMedGoogle Scholar
  24. Dussutour A, Poissonnier L-A, Buhl J, Simpson SJ (2016) Resistance to nutritional stress in ants: when being fat is advantageous. J Exp Biol 219:824–833. doi:10.1242/jeb.136234 CrossRefPubMedGoogle Scholar
  25. Economo EP, Klimov P, Sarnat EM et al (2015) Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc R Soc Lond B Biol Sci 282:20141416. doi:10.1098/rspb.2014.1416 CrossRefGoogle Scholar
  26. Floyd RB (1985) Effects of Photoperiod and starvation on the temperature tolerance of Larvae of the Giant Toad, Bufo marinus. Copeia 1985:625–631. doi:10.2307/1444753 CrossRefGoogle Scholar
  27. Gordon DM (2013) The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498:91–93. doi:10.1038/nature12137 CrossRefPubMedGoogle Scholar
  28. Gunderson AR, Armstrong EJ, Stillman JH (2016) Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann Rev Mar Sci 8:357–378. doi:10.1146/annurev-marine-122414-033953 CrossRefPubMedGoogle Scholar
  29. Hayward SAL, Rinehart JP, Denlinger DL (2004) Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J Exp Biol 207:963–971. doi:10.1242/jeb.00842 CrossRefPubMedGoogle Scholar
  30. Hoekstra LA, Montooth KL (2013) Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evol Biol 13:68. doi:10.1186/1471-2148-13-68 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Holmstrup M, Hedlund K, Boriss H (2002) Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. J Insect Physiol 48:961–970. doi:10.1016/S0022-1910(02)00175-0 CrossRefPubMedGoogle Scholar
  32. Howard DF, Tschinkel WR (1980) The effect of colony size and starvation on food flow in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol 7:293–300. doi:10.1007/BF00300670 CrossRefGoogle Scholar
  33. Kaspari M, Clay NA, Lucas J et al (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob Change Biol 21:1092–1102. doi:10.1111/gcb.12750
  34. Kellermann V, Overgaard J, Hoffmann AA et al (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. PNAS 109:16228–16233. doi:10.1073/pnas.1207553109 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kingsolver JG, Diamond SE, Buckley LB (2013) Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct Ecol 27:1415–1423. doi:10.1111/1365-2435.12145
  36. Kingsolver JG, Woods HA, Kearney M, Michalakis Y (2016) Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am Nat 187:283–294CrossRefPubMedGoogle Scholar
  37. Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124. doi:10.1242/jeb.00549 CrossRefPubMedGoogle Scholar
  38. Kültz D (2005) Molecular and Evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257. doi:10.1146/annurev.physiol.67.040403.103635 CrossRefPubMedGoogle Scholar
  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  40. Lubertazzi D (2012) The biology and natural history of Aphaenogaster rudis. Psyche J Entomol. doi:10.1155/2012/752815 Google Scholar
  41. MacMillan HA, Walsh JP, Sinclair BJ (2009) The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci 16:263–276. doi:10.1111/j.1744-7917.2009.01251.x CrossRefGoogle Scholar
  42. Mizrahi T, Heller J, Goldenberg S, Arad Z (2010) Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress Chaperones 15:351–363. doi:10.1007/s12192-009-0150-9
  43. Morales MA, Heithaus ER (1998) Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology 79:734–739. doi:10.1890/0012-9658(1998)079[0734:FFSDMS]2.0.CO;2 CrossRefGoogle Scholar
  44. Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evol Int J org Evol 67:2240–2257. doi:10.1111/evo.12105 CrossRefGoogle Scholar
  45. Morris JP, Thatje S, Hauton C (2013) The use of stress-70 proteins in physiology: a re-appraisal. Mol Ecol 22:1494–1502. doi:10.1111/mec.12216 CrossRefPubMedGoogle Scholar
  46. Mueller B, Seneviratne SI (2012) Hot days induced by precipitation deficits at the global scale. PNAS 109:12398–12403. doi:10.1073/pnas.1204330109 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nguyen AD, Gotelli NJ, Cahan SH (2016) The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evol Biol 16:15. doi:10.1186/s12862-015-0573-0 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Overgaard J, Kristensen TN, Sørensen JG (2012) Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS One 7:e32758. doi:10.1371/journal.pone.0032758 CrossRefPubMedPubMedCentralGoogle Scholar
  49. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  50. Rezende EL, Tejedo M, Santos M (2011) Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct Ecol 25:111–121. doi:10.1111/j.1365-2435.2010.01778.x CrossRefGoogle Scholar
  51. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266. doi:10.1016/j.molcel.2010.10.006 CrossRefPubMedGoogle Scholar
  52. Rodriguez-Cabal MA, Stuble KL, Guénard B et al (2012) Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol Invasions 14:557–565. doi:10.1007/s10530-011-0097-5 CrossRefGoogle Scholar
  53. Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol Biogeogr 16:640–649. doi:10.1111/j.1466-8238.2007.00316.x CrossRefGoogle Scholar
  54. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA (2013) Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr Comp Biol ict004. doi:10.1093/icb/ict004 PubMedGoogle Scholar
  55. Smith JM (1957) Temperature tolerance and acclimatization in Drosophila Subobscura. J ExpBiol 34:85–96Google Scholar
  56. Stuble KL, Pelini SL, Diamond SE et al (2013) Foraging by forest ants under experimental climatic warming: a test at two sites. Ecol Evol 3:482–491. doi:10.1002/ece3.473 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stuble KL, Patterson CM, Rodriguez-Cabal MA et al (2014) Ant-mediated seed dispersal in a warmed world. Peer J. doi:10.7717/peerj.286 PubMedPubMedCentralGoogle Scholar
  58. Tagliarolo M, McQuaid CD (2016) Field measurements indicate unexpected, serious underestimation of mussel heart rates and thermal tolerance by laboratory studies. PLOS One 11:e0146341. doi:10.1371/journal.pone.0146341 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Terblanche JS, Deere JA, Clusella-Trullas S et al (2007) Critical thermal limits depend on methodological context. Proc R Soc Lond B Biol Sci 274:2935–2943. doi:10.1098/rspb.2007.0985 CrossRefGoogle Scholar
  60. Terblanche JS, Hoffmann AA, Mitchell KA et al (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J ExpBiol 214:3713–3725. doi:10.1242/jeb.061283 Google Scholar
  61. Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544. doi:10.1093/icb/ict086
  62. Tripet F, Nonacs P (2004) Foraging for work and age-based polyethism: the roles of age and previous experience on task choice in ants. Ethology 110:863–877. doi:10.1111/j.1439-0310.2004.01023.x CrossRefGoogle Scholar
  63. Tschinkel WR (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insectes Soc 45:385–410. doi:10.1007/s000400050097
  64. Venables WN, Ripley BD (2002) Modern applied statistics with S. 4th edn. Springer, New York. ISBN 0-387-95457-0 CrossRefGoogle Scholar
  65. Warren RJ, Bradfor MA (2014) Mutualism fails when climate response differs between interacting species. Global Change Biol 20:466–474. doi:10.1111/gcb.12407
  66. Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biol 19:2082–2088.doi:10.1111/gcb.12169
  67. Warren RJ, Giladi I, Bradford MA (2010) Ant-mediated seed dispersal does not facilitate niche expansion. J Ecol 98:1178–1185. doi:10.1111/j.1365-2745.2010.01694.x CrossRefGoogle Scholar
  68. Warren RJ, Bahn V, Bradford MA (2011) Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biol 17:2444–2454.doi:10.1111/j.1365-2486.2010.02386.x
  69. Williams CM, Henry HAL, Sinclair BJ (2015) Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev 90:214–235. doi:10.1111/brv.12105 CrossRefPubMedGoogle Scholar
  70. Wittman SE, Sanders NJ, Ellison AM et al (2010) Species interactions and thermal constraints on ant community structure. Oikos 119:551–559. doi:10.1111/j.1600-0706.2009.17792.x CrossRefGoogle Scholar
  71. Zinke I, Schütz CS, Katzenberger JD et al (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21:6162–6173. doi:10.1093/emboj/cdf600 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andrew D. Nguyen
    • 1
  • Kerri DeNovellis
    • 1
  • Skyler Resendez
    • 2
  • Jeremy D. Pustilnik
    • 1
  • Nicholas J. Gotelli
    • 1
  • Joel D. Parker
    • 2
  • Sara Helms Cahan
    • 1
  1. 1.Department of BiologyUniversity of VermontBurlingtonUSA
  2. 2.Biological SciencesState University of New York PlattsburghPlattsburghUSA

Personalised recommendations