Journal of Comparative Physiology B

, Volume 187, Issue 7, pp 1009–1018 | Cite as

Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability

  • Shu-Ran Li
  • Yang Wang
  • Liang Ma
  • Zhi-Gao Zeng
  • Jun-Huai Bi
  • Wei-Guo Du
Original Paper


How ectotherms exploit thermal resources has important implications for their habitat utilization and thermal vulnerability to climate warming. To address this issue, we investigated thermal relations of three sympatric lizard species (Eremias argus, Eremias multiocellata, and Phrynocephalus przewalskii) in the desert steppe of Inner Mongolia, China. We determined the thermoregulatory behavior, body temperature (T b), operative temperature (T e), selected body temperature (T sel), and critical thermal maximum (CTmax) of adult lizards. Based on these physiological parameters, we quantified the accuracy and effectiveness of thermoregulation as well as thermal-safety margin for these species. The three species were accurate and effective thermoregulators. The P. przewalskii preferred open habitats, and had a higher T b than the two Eremias lizards, which preferred shade habitats and shuttled more frequently between the shade and sun. This indicated that the three sympatric lizards have different thermoregulatory behavior and thermal physiology, which might facilitate their coexistence in the desert steppe ecosystem. In addition, the P. przewalskii had higher T sel and CTmax, and a wider thermal-safety margin than the two Eremias lizards, suggesting that the two Eremias lizards would be more vulnerable to climate warming than P. przewalskii.


Climate warming Ecological divergence Desert Reptiles Thermoregulation 



We thank Peng Cao and Shao-Yong Chen for assistance in the field. We are grateful to the staffs at Shierliancheng Field Station, Institute of Grassland Research of the Chinese Academy of Agricultural Sciences for logistic support. Funding was supported by the National Key Research and Development Program of China (2016YFC0503200).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Research was performed under approvals from the Animal Ethics Committee at the Institute of Zoology, Chinese Academy of Sciences (IOZ14001).


  1. Adolph SC (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71:315–327CrossRefGoogle Scholar
  2. Angiletta MJ (2009) Thermal adaptation: a theoretical and empiricial synthesis. Oxford University Press, New YorkCrossRefGoogle Scholar
  3. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268CrossRefGoogle Scholar
  4. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol lett 16:1206–1219CrossRefPubMedGoogle Scholar
  5. Bakken GS, Angilletta MJ (2014) How to avoid errors when quantifying thermal environments. Funct Ecol 28(1):96–107CrossRefGoogle Scholar
  6. Bauwens D, Hertz PE, Castilla AM (1996) Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology 77:1818–1830CrossRefGoogle Scholar
  7. Bauwens D, Castilla AM, Mouton PlFN (1999) Field body temperatures, activity levels and opportunities for thermoregulation in an extreme microhabitat specialist. J Zool 249:11–18CrossRefGoogle Scholar
  8. Bennett AF (1980) The thermal-dependence of lizard behavior. Anim Behav 28:752–762CrossRefGoogle Scholar
  9. Bennett AF, Johnalder H (1986) Thermal relations of some Australian skinks (Sauria: Scincidae). Copeia 1986:57–64CrossRefGoogle Scholar
  10. Besson AA, Cree A (2010) A cold-adapted reptile becomes a more effective thermoregulator in a thermally challenging environment. Oecologia 163:571–581CrossRefPubMedGoogle Scholar
  11. Blouin-Demers G, Weatherhead PJ (2001a) An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsoleta. J Anim Ecol 70(6):1006–1013CrossRefGoogle Scholar
  12. Blouin-Demers G, Weatherhead PJ (2001b) Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82:3025–3043CrossRefGoogle Scholar
  13. Blouin-Demers G, Weatherhead PJ (2002) Habitat-specific behavioural thermoregulation by black rat snakes (Elaphe obsoleta obsoleta). Oikos 97(1):59–68CrossRefGoogle Scholar
  14. Bogert CM (1949) Thermoregulation in reptiles, a factor in evolution. Evolution Int J org Evolution 3(3):195–211CrossRefGoogle Scholar
  15. Bowker RG (1984) Precision of thermoregulation of some African lizards. Physiol Zool 57:401–412CrossRefGoogle Scholar
  16. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751CrossRefPubMedGoogle Scholar
  17. Corbalan V, Debandi G, Kubisch E (2013) Thermal ecology of two sympatric saxicolous lizards of the genus Phymaturus from the Payunia region (Argentina). J Therm Biol 38:384–389CrossRefGoogle Scholar
  18. Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:263–296Google Scholar
  19. Daly BG, Dickman CR, Crowther MS (2008) Causes of habitat divergence in two species of agamid lizards in arid central Australia. Ecology 89:65–76CrossRefPubMedGoogle Scholar
  20. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672CrossRefPubMedPubMedCentralGoogle Scholar
  21. do Amaral JPS, Marvin GA, Hutchison VH (2002) Thermoregulation in the box turtles Terrapene carolina and Terrapene ornata. Can J Zool 80(5):934–943CrossRefGoogle Scholar
  22. Du WG, Yan SJ, Ji X (2000) Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol 25:197–202CrossRefGoogle Scholar
  23. Du WG, Shou L, Shen JY (2006) Habitat selection in two sympatric Chinese skinks, Eumeces elegans and Sphenomorphus indicus: do thermal preferences matter? Can J Zool 84:1300–1306CrossRefGoogle Scholar
  24. Dubois Y, Blouin-Demers G, Shipley B, Thomas D (2009) Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly. J Anim Ecol 78:1023–1032CrossRefPubMedGoogle Scholar
  25. Grant BW, Dunham AE (1988) Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology 69:167–176CrossRefGoogle Scholar
  26. Grigg JW, Buckley LB (2013) Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett 9:20121056CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grover MC (1996) Microhabitat use and thermal ecology of two narrowly sympatric Sceloporus (Phrynosomatidae) lizards. J Herpetol 30(2):152–160CrossRefGoogle Scholar
  28. Gunderson AR, Stillman JH (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc R Soc B 282(1808):20150401CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guo X, Wang Y (2007) Partitioned Bayesian analyses, dispersal–vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. Mol Phylogenet Evol 45:643–662CrossRefPubMedGoogle Scholar
  30. Heatwole H (1970) Thermal ecology of the desert dragon Amphibolurus inermis. Ecol Monogr 40:425–457CrossRefGoogle Scholar
  31. Hertz PE (1992a) Evaluating thermal resource partitioning by sympatric lizards Anolis cooki and A. cristatellus: a field test using null hypotheses. Oecologia 90:127–136CrossRefPubMedGoogle Scholar
  32. Hertz PE (1992b) Temperature regulation in Puerto Rican Anolis lizard: A field test using null hypotheses. Ecology 73:1405–1417CrossRefGoogle Scholar
  33. Hertz PE, Huey RB, Nevo E (1983) Homage to Santa-Anita—thermal sensitivity of sprint speed in Agamid lizards. Evol Int J org Evolution 37:1075–1084CrossRefGoogle Scholar
  34. Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms. Am Nat 142:796–818CrossRefPubMedGoogle Scholar
  35. Hertz PE, Arima Y, Harrison A, Huey RB, Losos JB, Glor RE (2013) Asynchronous evolution of physiology and morphology in Anolis lizards. Evolution Int J org Evol 67:2101–2113CrossRefGoogle Scholar
  36. Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of reptilia, vol 12. Academic, London, pp 25–91Google Scholar
  37. Huey RB, Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae: Mabuya). Ecology 58:119–128CrossRefGoogle Scholar
  38. Huey RB, Tewksbury JJ (2009) Can behavior douse the fire of climate warming? Proc Natl Acad Sci USA 106:3647–3648CrossRefPubMedPubMedCentralGoogle Scholar
  39. Huey RB, Pianka ER, Egan ME, Coons LW (1974) Ecological shifts in sympatry—Kalahari fossorial lizards (Typhlosaurus). Ecology 55:304–316CrossRefGoogle Scholar
  40. Huey RB, Pianka ER, Hoffman JA (1977) Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58:1066–1075CrossRefGoogle Scholar
  41. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Alvarez Perez HJ, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B 276:1939–1948CrossRefPubMedPubMedCentralGoogle Scholar
  42. Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lara-Resendiz RA, Gadsden H, Rosen PC, Sinervo B, Mendez-De La Cruz FR (2015) Thermoregulation of two sympatric species of horned lizards in the Chihuahuan Desert and their local extinction risk. J Therm Biol 48:1–10CrossRefPubMedGoogle Scholar
  45. Lelievre H, Blouin-Demers G, Pinaud D, Lisse H, Bonnet X, Lourdais O (2011) Contrasted thermal preferences translate into divergences in habitat use and realized performance in two sympatric snakes. J Zool 284:265–275CrossRefGoogle Scholar
  46. Li H, Wang Z, Mei W, Ji X (2009) Temperature acclimation affects thermal preference and tolerance in three Eremias lizards. Curr Zool 55:258–265Google Scholar
  47. Lixia W, Shihong S, Yuanting J, Yongfeng Y, Naifa L (2007) Molecular phylogeography of the Chinese lacertids of the genus Eremias (Lacertidae) based on 16 S rRNA mitochondrial DNA sequences. Amphibia-Reptilia 28:33–41CrossRefGoogle Scholar
  48. Lopez P, Martin J (2013) Effects of microhabitat-dependent predation risk on vigilance during intermittent locomotion in Psammodromus algirus Lizards. Ethology 119(4):316–324CrossRefGoogle Scholar
  49. Luo LG, Qu YF, Ji X (2005) Thermal dependence of food assimilation and sprint speed in a lacertid lizard (Eremias argus) from northern China. Dong wu xue bao.[Acta zoologica Sinica] 52:256–262Google Scholar
  50. Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. Am Zool 19:331–343CrossRefGoogle Scholar
  51. Martinvallejo J, Garciafernandez J, Perezmellado V, Vicentevillardon JL (1995) Habitat selection and thermal ecology of the sympatric lizards Podarcis muralis and Podarcis hispanica in a mountain region of central spain. Herpetol J 5(1):181–188Google Scholar
  52. Melville J, Schulte JA (2001) Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards. Austral Ecol 26:660–669CrossRefGoogle Scholar
  53. Middleton N, Thomas D (1997) World atlas of desertification, 2nd edn. Arnold, LondonGoogle Scholar
  54. Pachauri RK et al (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  55. Pianka ER (1971) Comparative ecology of two lizards. Copeia 1971:129–138CrossRefGoogle Scholar
  56. Pianka ER (1986) Ecology and natural history of desert lizards: analyses of the ecological niche and community structure. Princeton University Press, PrincetonCrossRefGoogle Scholar
  57. Pianka ER (1989) Desert lizard diversity: additional comments and some data. Am Nat 134(3):344–364CrossRefGoogle Scholar
  58. Qu YF, Li H, Gao JF, Xu XF, Ji X (2011) Thermal preference, thermal tolerance and the thermal dependence of digestive performance in two coexisting Phrynocephalus lizards. Curr Zool 57:684–700CrossRefGoogle Scholar
  59. Rocha CFD, Vrcibradic D (1996) Thermal ecology of two sympatric skinks (Mabuya macrorhyncha and Mabuya agilis) in a Brazilian restinga habitat. Aust J Ecol 21(1):110–113CrossRefGoogle Scholar
  60. Row JR, Blouin-Demers G (2006) Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes. Oecologia 148:1–11CrossRefPubMedGoogle Scholar
  61. Ruibal R (1960) Thermal relations of five species of tropical lizards. Evol Int J org Evol 15:98–111CrossRefGoogle Scholar
  62. Rummel JD, Roughgarden J (1985) Effects of reduced perch-height separation on competition between two Anolis lizards. Ecology 66(2):430–444CrossRefGoogle Scholar
  63. Sartorius SS, do Amaral JPS, Durtsche RD, Deen CM, Lutterschmidt WI (2002) Thermoregulatory accuracy, precision, and effectiveness in two sand-dwelling lizards under mild environmental conditions. Can J Zool 80:1966–1976CrossRefGoogle Scholar
  64. Scheers H, Van Damme R (2002) Micro-scale differences in thermal habitat quality and a possible case of evolutionary flexibility in the thermal physiology of lacertid lizards. Oecologia 132:323–331CrossRefPubMedGoogle Scholar
  65. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39CrossRefPubMedGoogle Scholar
  66. Sears MW, Angilletta MJ (2015) Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am Nat 185:E94–E102CrossRefPubMedGoogle Scholar
  67. Sears MW, Angilletta MJ Jr, Schuler MS, Borchert J, Dilliplane KF, Stegman M, Rusch TW, Mitchell WA (2016) Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc Natl Acad Sci USA 113:10595–11060CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shen JW, Pike DA, Du WG (2010) Movements and microhabitat use of translocated big-headed turtles (Platysternon megacephalum) in southern China. Chel Cons Biol 9:154–161CrossRefGoogle Scholar
  69. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA 111:5610–5615CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tang XL, Yue F, He JZ, Wang NB, Ma M, Mo JR, Chen Q (2013) Ontogenetic and sexual differences of thermal biology and locomotor performance in a lacertid lizard, Eremias multiocellata. Zoology 116:331–335CrossRefPubMedGoogle Scholar
  71. Vandamme R, Bauwens D, Verheyen RF (1991) The thermal dependence of feeding behavior, food consumption and gut passage time in the lizard Lacerta vivipara Jacquin. Funct Ecol 5:507–517CrossRefGoogle Scholar
  72. Wang Y, Zeng ZG, Li SR, Bi JH, Du WG (2016) Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction. Oecologia 182:961–971CrossRefPubMedGoogle Scholar
  73. Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644CrossRefPubMedGoogle Scholar
  74. Zeng ZG Bi JH, Li SR, Wang Y, Robbins TR, Chen SY, Du WG (2016) Habitat alteration influences a desert steppe lizard community: implications of species-specific preferences and performance. Herpetol Monogr 30:34–48CrossRefGoogle Scholar
  75. Zhao KT (1999) Lacertidae. In: Zhao EM, Zhou KY (eds) Sinica Fauna, Reptilia (Squamata: Lacertilia). Science, Beijing, pp 219–242Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shu-Ran Li
    • 1
    • 2
  • Yang Wang
    • 1
    • 2
  • Liang Ma
    • 1
    • 2
  • Zhi-Gao Zeng
    • 1
  • Jun-Huai Bi
    • 3
  • Wei-Guo Du
    • 1
  1. 1.Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.College of Life SciencesInner Mongolia Normal UniversityHohhotPeople’s Republic of China

Personalised recommendations