Journal of Comparative Physiology B

, Volume 187, Issue 4, pp 529–543 | Cite as

Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response

  • L. S. Stapp
  • J. Thomsen
  • H. Schade
  • C. Bock
  • F. Melzner
  • H. O. Pörtner
  • G. Lannig
Original Paper


Increased maintenance costs at cellular, and consequently organism level, are thought to be involved in shaping the sensitivity of marine calcifiers to ocean acidification (OA). Yet, knowledge of the capacity of marine calcifiers to undergo metabolic adaptation is sparse. In Kiel Fjord, blue mussels thrive despite periodically high seawater PCO2, making this population interesting for studying metabolic adaptation under OA. Consequently, we conducted a multi-generation experiment and compared physiological responses of F1 mussels from ‘tolerant’ and ‘sensitive’ families exposed to OA for 1 year. Family classifications were based on larval survival; tolerant families settled at all PCO2 levels (700, 1120, 2400 µatm) while sensitive families did not settle at the highest PCO2 (≥99.8% mortality). We found similar filtration rates between family types at the control and intermediate PCO2 level. However, at 2400 µatm, filtration and metabolic scope of gill tissue decreased in tolerant families, indicating functional limitations at the tissue level. Routine metabolic rates (RMR) and summed tissue respiration (gill and outer mantle tissue) of tolerant families were increased at intermediate PCO2, indicating elevated cellular homeostatic costs in various tissues. By contrast, OA did not affect tissue and routine metabolism of sensitive families. However, tolerant mussels were characterised by lower RMR at control PCO2 than sensitive families, which had variable RMR. This might provide the energetic scope to cover increased energetic demands under OA, highlighting the importance of analysing intra-population variability. The mechanisms shaping such difference in RMR and scope, and thus species’ adaptation potential, remain to be identified.


CO2 Multi-generation Metabolic rate Energy metabolism Clearance rate Protein biosynthesis 



We would like to thank U. Panknin for her continuous help with mussel cultivation and T. Hirse and A. Tillmann for technical support. We further thank F. Kupprat for supporting haemolymph pH measurements and for providing haemolymph PO2 data, R. Kiko for helpful R-scripts as well as three anonymous reviewers whose suggestions helped to improve a previous version of this manuscript. This work was supported by the German Federal Ministry of Education and Research (BMBF) funded project BIOACID II (subproject 3.7 (FKZ 03F0655B) and subproject 3.4 (FKZ 03F0655A)) and is a contribution to the PACES (Polar regions and coasts in a changing earth system) research programme of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

Supplementary material

360_2016_1053_MOESM1_ESM.docx (56 kb)
Fig S1 Extracellular pH of tolerant and sensitive families of Mytilus edulis raised for two years at nominal control (700 µatm), intermediate (1120 µatm) and high (2400 µatm) seawater PCO2. Values are given as mean ± SE, N = 13-19. Haemolymph pH was determined at acclimation temperature (18 °C) using WTW 330i pH meter equipped with a Sentix Microelectrode. Different letters indicate significantly different extracellular pH between groups, P < 0.05 (DOCX 56 kb)
360_2016_1053_MOESM2_ESM.eps (86 kb)
Table S1 Chemical buffer composition used for experiments with isolated gill and outer mantle tissue (EPS 86 kb)


  1. Applebaum SL, Pan TCF, Hedgecock D, Manahan DT (2014) Separating the nature and nurture of the allocation of energy in response to global change. Integr Comp Biol 54:284–295. doi: 10.1093/icb/icu062 CrossRefPubMedGoogle Scholar
  2. Bach LT (2015) Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences 12:4939–4951. doi: 10.5194/bg-12-4939-2015 CrossRefGoogle Scholar
  3. Bayne BL (1976) Marine mussels: their ecology and physiology. Cambridge University Press, CambridgeGoogle Scholar
  4. Bayne BL (2004) Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integr Comp Biol 44:425–432. doi: 10.1093/icb/44.6.425 CrossRefPubMedGoogle Scholar
  5. Bayne BL, Hawkins AJS (1997) Protein metabolism, the costs of growth, and genomic heterozygosity: experiments with the mussel Mytilus galloprovincialis Lmk. Physiol Zool 70:391–402. doi: 10.1086/515848 CrossRefPubMedGoogle Scholar
  6. Bayne BL, Klumpp DW, Clarke KR (1984) Aspects of feeding, including estimates of gut residence time, in three mytilid species (Bivalvia, Mollusca) at two contrasting sites in the Cape Peninsula, South Africa. Oecologia 64:26–33. doi: 10.1007/BF00377539 CrossRefPubMedGoogle Scholar
  7. Beedham GE (1958) Observations on the mantle of Lamellibranchia. Q J Microsc Sci 99:181–197Google Scholar
  8. Beniash E, Ivanina A, Lieb NS et al (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108. doi: 10.3354/meps08841 CrossRefGoogle Scholar
  9. Boron WF (2004) Regulation of intracellular pH. AJP Adv Physiol Educ 28:160–179. doi: 10.1152/advan.00045.2004 CrossRefGoogle Scholar
  10. Burton T, Killen SS, Armstrong JD, Metcalfe NB (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc B 278:3465–3473. doi: 10.1098/rspb.2011.1778 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calosi P, Rastrick SPS, Lombardi C et al (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc B 368:20120444. doi: 10.1098/rstb.2012.0444 CrossRefGoogle Scholar
  12. Cherkasov AS, Biswas PK, Ridings DM et al (2006) Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses. J Exp Biol 209:1274–1284. doi: 10.1242/jeb.02093 CrossRefPubMedGoogle Scholar
  13. Clements JC (2016) Meta-analysis reveals taxon- and life stage-dependent effects of ocean acidification on marine calcifier feeding performance. bioRxiv 066076. doi:  10.1101/066076
  14. Clemmesen B, Jørgensen CB (1987) Energetic costs and efficiencies of ciliary filter feeding. Mar Biol 94:445–449. doi: 10.1007/BF00428251 CrossRefGoogle Scholar
  15. Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2:356–358. doi: 10.1007/BF00355716 CrossRefGoogle Scholar
  16. De Wit P, Dupont S, Thor P (2015) Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol Appl 9:1112–1123. doi: 10.1111/eva.12335 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Pt I 34:1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  18. Dickson AG, Sabine CL, Christian JR (2007) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publications 3Google Scholar
  19. Diehl WJ, Gaffney PM, Koehn RK (1986) Physiological and Genetic Aspects of Growth in the Mussel Mytilus edulis. I. Oxygen Consumption, Growth, and Weight Loss. Physiol Zool 59:201–211. doi: 10.2307/30156034 CrossRefGoogle Scholar
  20. Doeller JE, Kraus DW, Shick JM, Gnaiger E (1993) Heat flux, oxygen flux, and mitochondrial redox state as a function of oxygen availability and ciliary activity in excised gills of Mytilus edulis. J Exp Zool 265:1–8. doi: 10.1002/jez.1402650102 CrossRefPubMedGoogle Scholar
  21. Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Change Biol 19:3355–3367. doi: 10.1111/gcb.12276 Google Scholar
  22. Fenteany G, Morse DE (1993) Specific inhibitors of protein synthesis do not block RNA synthesis or settlement in larvae of a marine gastropod mollusk (Haliotis rufescens). Biol Bull 184:6–14. doi: 10.2307/1542375 CrossRefGoogle Scholar
  23. Fitzer SC, Cusack M, Phoenix VR, Kamenos NA (2014) Ocean acidification reduces the crystallographic control in juvenile mussel shells. J Struct Biol 188:39–45. doi: 10.1016/j.jsb.2014.08.007 CrossRefPubMedGoogle Scholar
  24. Foo SA, Byrne M (2016) Acclimatization and adaptive capacity of marine species in a changing ocean. Adv Mar Biol 74:69–116. doi: 10.1016/bs.amb.2016.06.001 CrossRefPubMedGoogle Scholar
  25. Gazeau F, Parker LM, Comeau S et al (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245. doi: 10.1007/s00227-013-2219-3 CrossRefGoogle Scholar
  26. Gazeau F, Alliouane S, Bock C et al (2014) Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front Mar Sci 1:1–12. doi: 10.3389/fmars.2014.00062 CrossRefGoogle Scholar
  27. Gibbons IR (1982) Introduction: dynein ATPases. Cell Motil 2:87–93. doi: 10.1002/cm.970020718 CrossRefGoogle Scholar
  28. Harvey BP, Al-Janabi B, Broszeit S et al (2014) Evolution of marine organisms under climate change at different levels of biological organisation. Water 6:3545–3574. doi: 10.3390/w6113545 CrossRefGoogle Scholar
  29. Hawkins AJS, Bayne BL, Day AJ (1986) Protein turnover, physiological energetics and heterozygosity in the blue mussel, Mytilus edulis: the basis of variable age-specific growth. Proc R Soc B 229:161–176. doi: 10.1098/rspb.1986.0080 CrossRefGoogle Scholar
  30. Hawkins AJS, Wilson IA, Bayne BL (1987) Thermal responses reflect protein turnover in Mytilus edulis L. Funct Ecol 1:339–351. doi: 10.2307/2389790 CrossRefGoogle Scholar
  31. Haywood C (1925) The relative importance of pH and carbon dioxide tension in determining the cessation of ciliary movement in acidified sea water. J Gen Physiol 7:693–697. doi: 10.1085/jgp.7.6.693 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Heinemann A, Fietzke J, Melzner F et al (2012) Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: acid–base status, trace elements and δ11B. Geochem Geophys Geosyst 13:Q01005. doi: 10.1029/2011GC003790 CrossRefGoogle Scholar
  33. Heisler N (1986) Buffering and transmembrane ion transfer processes. In: Heisler N (ed) Acid–Base regulation in animals. Elsevier, Amsterdam, pp 3–47Google Scholar
  34. HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc No 115B:148. ISSN 0357–2994Google Scholar
  35. Hettinger A, Sanford E, Hill TM et al (2013) The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 10:6629–6638. doi: 10.5194/bg-10-6629-2013 CrossRefGoogle Scholar
  36. Hüning (2014) Responsiveness of Mytilus edulis towards mechanical stress and elevated pCO2—combined transcriptomic, proteomic and physiological analyses. Dissertation, University of BremenGoogle Scholar
  37. Hüning AK, Melzner F, Thomsen J et al (2013) Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 160:1845–1861. doi: 10.1007/s00227-012-1930-9 CrossRefGoogle Scholar
  38. Hüning AK, Lange SM, Ramesh K et al (2016) A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Mar Genom 27:57–67. doi: 10.1016/j.margen.2016.03.011 CrossRefGoogle Scholar
  39. Kelly MW, Hofmann GE (2012) Adaptation and the physiology of ocean acidification. Funct Ecol 27:980–990. doi: 10.1111/j.1365-2435.2012.02061.x CrossRefGoogle Scholar
  40. Kroeker KJ, Kordas RL, Crim R et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896. doi: 10.1111/gcb.12179 CrossRefGoogle Scholar
  41. Kupprat F (2014) Determination of acute protein biosynthesis rates in the blue mussel Mytilus edulis: The role of hemolymph parameters in temperature-dependent growth. Master’s Thesis, University of BremenGoogle Scholar
  42. Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437. doi: 10.2307/2410812 CrossRefGoogle Scholar
  43. Lannig G, Eilers S, Pörtner HO et al (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339. doi: 10.3390/md8082318 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lewis E, Wallace D (1998) Program Developed for CO2 System Calculations. ORNL/CDIAC-105. Carbon dioxide Information Analysis Center, Oak Ridge National Laboratory. US Dep. of Energy, Oak Ridge, TNGoogle Scholar
  45. Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  46. Melzner F, Gutowska MA, Langenbuch M et al (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331. doi: 10.5194/bg-6-2313-2009 CrossRefGoogle Scholar
  47. Melzner F, Stange P, Trübenbach K et al (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One 6:e24223. doi: 10.1371/journal.pone.0024223.t003 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Melzner F, Thomsen J, Koeve W et al (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888. doi: 10.1007/s00227-012-1954-1 CrossRefGoogle Scholar
  49. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118. doi: 10.3354/meps293109 CrossRefGoogle Scholar
  50. Mulvey M, Feng SY (1981) Hemolymph constituents of normal and Proctoeces maculatus infected Mytilus edulis. Comp Biochem Physiol A 70A:119–125. doi: 10.1016/0300-9629(81)90407-2 CrossRefGoogle Scholar
  51. Navarro JM, Torres R, Acuña K et al (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248. doi: 10.1016/j.chemosphere.2012.09.063 CrossRefPubMedGoogle Scholar
  52. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 CrossRefPubMedGoogle Scholar
  53. Palmer AR (1992) Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci USA 89:1379–1382. doi: 10.1073/pnas.89.4.1379 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pan TCF, Applebaum SL, Manahan DT (2015) Experimental ocean acidification alters the allocation of metabolic energy. Proc Natl Acad Sci USA 112:4696–4701. doi: 10.1073/pnas.1416967112 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob Change Biol 20:765–777. doi: 10.1111/gcb.12478 CrossRefGoogle Scholar
  56. Paparo A (1972) Innervation of the lateral cilia in the mussel Mytilus Edulis L. Biol Bull 143:592–604CrossRefPubMedGoogle Scholar
  57. Parker LM, Ross PM, O’Connor WA (2010) Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158:689–697. doi: 10.1007/s00227-010-1592-4 CrossRefGoogle Scholar
  58. Parker LM, Ross PM, O’Connor WA et al (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Change Biol 18:82–92. doi: 10.1111/j.1365-2486.2011.02520.x CrossRefGoogle Scholar
  59. Parker LM, O’Connor WA, Raftos DA et al (2015) Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One 10:e0132276. doi: 10.1371/journal.pone.0132276.t001 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pespeni MH, Sanford E, Gaylord B et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942. doi: 10.1073/pnas.1220673110 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pistevos JCA, Calosi P, Widdicombe S, Bishop JDD (2011) Will variation among genetic individuals influence species responses to global climate change? Oikos 120:675–689. doi: 10.1111/j.1600-0706.2010.19470.x CrossRefGoogle Scholar
  62. Pörtner H (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi: 10.3354/meps07768 CrossRefGoogle Scholar
  63. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 Concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718. doi: 10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  64. Ramajo L, Pérez-Léon E, Hendriks IE et al (2016) Food supply confers calcifiers resistance to ocean acidification. Sci Rep 6:19374. doi: 10.1038/srep19374 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Riisgård HU, Larsen PS (2007) Viscosity of seawater controls beat frequency of water-pumping cilia and filtration rate of mussels Mytilus edulis. Mar Ecol Prog Ser 343:141–150. doi: 10.3354/meps06930 CrossRefGoogle Scholar
  66. Riisgård HU, Randløv A (1981) Energy budget, growth and filtration rates in Mytilus edulis at different algal concentrations. Mar Biol 61:227–234. doi: 10.1007/BF00386664 CrossRefGoogle Scholar
  67. Rodriguez JL, Sedano FJ, García-Martín LO et al (1990) Energy metabolism of newly settled Ostrea edulis spat during metamorphosis. Mar Biol 106:109–111. doi: 10.1007/BF02114680 CrossRefGoogle Scholar
  68. Ross PM, Parker L, Byrne M (2016) Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J Mar Sci fsv254. doi:  10.1093/icesjms/fsv254
  69. Saderne V, Fietzek P, Herman PMJ (2013) Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS One 8:e62689. doi: 10.1371/journal.pone.0062689 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sánchez-Lazo C, Martínez-Pita I (2012) Biochemical and energy dynamics during larval development of the mussel Mytilus galloprovincialis (Lamarck, 1819). Aquaculture 358–359:71–78. doi: 10.1016/j.aquaculture.2012.06.021 CrossRefGoogle Scholar
  71. Sokolova IM, Frederich M, Bagwe R et al (2012) Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79:1–15. doi: 10.1016/j.marenvres.2012.04.003 CrossRefPubMedGoogle Scholar
  72. Strahl J, Dringen R, Schmidt MM et al (2011) Metabolic and physiological responses in tissues of the long-lived bivalve Arctica islandica to oxygen deficiency. Comp Biochem Physiol A 158:513–519. doi: 10.1016/j.cbpa.2010.12.015 CrossRefGoogle Scholar
  73. Strobel A, Bennecke S, Leo E et al (2012) Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Front Zool 9:1. doi: 10.1186/1742-9994-9-28 CrossRefGoogle Scholar
  74. Stumpp M, Wren J, Melzner F et al (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A 160:331–340. doi: 10.1016/j.cbpa.2011.06.022 CrossRefGoogle Scholar
  75. Stumpp M, Trübenbach K, Brennecke D et al (2012) Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat Toxicol 110–111:194–207. doi: 10.1016/j.aquatox.2011.12.020 CrossRefPubMedGoogle Scholar
  76. Stumpp M, Hu M, Casties I et al (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Change 3:1044–1049. doi: 10.1038/nclimate2028 CrossRefGoogle Scholar
  77. Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676. doi: 10.1007/s00227-010-1527-0 CrossRefGoogle Scholar
  78. Thomsen J, Gutowska MA, Saphörster J et al (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891. doi: 10.5194/bg-7-3879-2010 CrossRefGoogle Scholar
  79. Thomsen J, Casties I, Pansch C et al (2013) Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob Change Biol 19:1017–1027. doi: 10.1111/gcb.12109 CrossRefGoogle Scholar
  80. Thomsen J, Haynert K, Wegner KM, Melzner F (2015) Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 12:4209–4220. doi: 10.5194/bg-12-4209-2015 CrossRefGoogle Scholar
  81. Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Change Biol 21:2261–2271. doi: 10.1111/gcb.12815 CrossRefGoogle Scholar
  82. Towle EK, Enochs IC, Langdon C (2015) Threatened caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS One 10:e0123394. doi: 10.1371/journal.pone.0123394 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Valladares F, Matesanz S, Guilhaumon F et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364. doi: 10.1111/ele.12348 CrossRefPubMedGoogle Scholar
  84. Vargas CA, de al Hoz M, Aguilera V et al (2013) CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J Plankton Res 35:1059–1068. doi: 10.1093/plankt/fbt045 CrossRefGoogle Scholar
  85. Vargas CA, Aguilera VM, Martín VS et al (2015) CO2-driven ocean acidification disrupts the filter feeding behavior in chilean gastropod and bivalve species from different geographic localities. Estuaries Coasts 38:1163–1177. doi: 10.1007/s12237-014-9873-7 CrossRefGoogle Scholar
  86. Waldbusser GG, Brunner EL, Haley BA et al (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys Res Lett 40:2171–2176. doi: 10.1002/grl.50449 CrossRefGoogle Scholar
  87. Waldbusser GG, Hales B, Langdon CJ et al (2015) Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat Clim Change 5:273–280. doi: 10.1038/nclimate2479 CrossRefGoogle Scholar
  88. Wittmann AC, Pörtner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change 3:995–1001. doi: 10.1038/nclimate1982 CrossRefGoogle Scholar
  89. Xu X, Yang F, Zhao L, Yan X (2016) Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp Biochem Physiol A 196:20–29. doi: 10.1016/j.cbpa.2016.02.014 CrossRefGoogle Scholar
  90. Zhang H, Shin PKS, Cheung SG (2015) Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis. Mar Environ Res 106:51–60. doi: 10.1016/j.marenvres.2015.03.001 CrossRefPubMedGoogle Scholar
  91. Zittier Z, Bock C, Pörtner HO (2012) Impact of ocean acidification on the thermal tolerance and acid–base regulation capacity of Mytilus edulis from the White Sea, The Ocean in a High-CO2 World—Third Symposium, Monterey, California, 24 September 2012—27 September 2012, hdl:10013/epic.40120Google Scholar
  92. Zittier Z, Bock C, Lannig G, Pörtner HO (2015) Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis (L.) from the North Sea. J Exp Mar Bio Ecol 473:16–25. doi: 10.1016/j.jembe.2015.08.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. S. Stapp
    • 1
    • 2
  • J. Thomsen
    • 3
  • H. Schade
    • 3
    • 4
  • C. Bock
    • 1
  • F. Melzner
    • 3
  • H. O. Pörtner
    • 1
    • 2
  • G. Lannig
    • 1
  1. 1.Integrative EcophysiologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.University of BremenBremenGermany
  3. 3.Marine EcologyGEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  4. 4.Marine Biology, Faculty of Mathematics and Natural Sciences (MNF)Rostock UniversityRostockGermany

Personalised recommendations