Journal of Comparative Physiology B

, Volume 187, Issue 3, pp 503–516 | Cite as

Swimming metabolic rates vary by sex and development stage, but not by species, in three species of Australian otariid seals

  • Monique A. LaddsEmail author
  • David J. Slip
  • Robert G. Harcourt
Original Paper


Physiology may limit the ability for marine mammals to adapt to changing environments. Depth and duration of foraging dives are a function of total available oxygen stores, which theoretically increase as animals grow, and metabolic costs. To evaluate how physiology may influence the travelling costs for seals to foraging patches in the wild, we measured metabolic rates of a cross-section of New Zealand fur seals, Australian fur seals and Australian sea lions representing different foraging strategies, development stages, sexes and sizes. We report values for standard metabolic rate, active metabolic rate (obtained from submerged swimming), along with estimates of cost of transport (COT), measured via respirometry. We found a decline in mass-specific metabolic rate with increased duration of submerged swimming. For most seals mass-specific metabolic rate increased with speed and for all seals mass-specific COT decreased with speed. Mass-specific metabolic rate was higher for subadult than adult fur seals and sea lions, corresponding to an overall higher minimum COT. Some sex differences were also apparent, such that female Australian fur seals and Australian sea lions had higher mass-specific metabolic rates than males. There were no species differences in standard or active metabolic rates for adult males or females. The seals in our study appear to operate at their physiological optimum during submerged swimming. However, the higher metabolic rates of young and female fur seals and sea lions may limit their scope for increasing foraging effort during times of resource limitation.


Energetics Otariid Foraging strategy Cost of transport 



Cost of transport


Mass-specific standard metabolic rate


Mass-specific active metabolic rate


Rate of oxygen consumption


Carbon dioxide





We thank all of the curatorial staff at Dolphin Marine Magic, Underwater World Mooloolaba and Taronga Zoo for their invaluable assistance with data collection, training the seals and ongoing commitment to this project. This project is funded by Australian Research Council Linkage Grant [Grant No. LP110200603] to RH and DS, with support from Taronga Conservation Society Australia. ML is a recipient of a Macquarie University Research Excellence Scholarship. All experiments were conducted under the current laws of Australia authorised under New South Wales Office of Environment and Heritage Scientific Licence SL100746 to RH.


  1. Ahonen H, Lowther AD, Harcourt RG, Goldsworthy SD, Charrier I, Stow AJ (2016) The limits of dispersal: fine scale spatial genetic structure in Australian sea lions. Front Mar Sci 3(65):1–12. doi: 10.3389/fmars.2016.00065/full Google Scholar
  2. Arnould JPY, Costa DP (2006) Sea lions in drag, fur seals incognito: insights from the otariid deviants. In: Trites AW, Atkinson SK, DeMaster DP et al. (eds) Sea Lions of the World Alaska Sea Grant College Program, Fairbanks, Alaska, pp 309–324. doi: 10.4027/slw.2006.22
  3. Arnould JP, Hindell MA (2001) Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can J Zool 79(1):35–48CrossRefGoogle Scholar
  4. Arnould J, Boyd I, Speakman J (1996) The relationship between foraging behaviour and energy expenditure in Antarctic fur seals. J Zool 239(4):769–782. doi: 10.1111/j.1469-7998.1996.tb05477.x CrossRefGoogle Scholar
  5. Boily P, Lavigne DM (1997) Developmental and seasonal changes in resting metabolic rates of captive female grey seals. Can J Zool 75(11):1781–1789. doi: 10.1139/z97-807 CrossRefGoogle Scholar
  6. Borgwardt N, Culik B (1999) Asian small-clawed otters (Amblonyx cinerea): resting and swimming metabolic rates. J Comp Physiol B Biochem Syst Environ Physiol 169(2):100–106CrossRefGoogle Scholar
  7. Boyd IL, Croxall JP (1996) Dive durations in pinnipeds and seabirds. Can J Zool 74(9):1696–1705. doi: 10.1139/z96-187 CrossRefGoogle Scholar
  8. Boyd IL, Duck CD (1991) Mass changes and metabolism in territorial male Antarctic fur seals (Arctocephalus gazella). Physiol Zool 64(1):375–392. doi: 10.2307/30158530 CrossRefGoogle Scholar
  9. Boyd I, Woakes A, Butler P, Davis R, Williams T (1995) Validation of heart rate and doubly labelled water as measures of metabolic rate during swimming in California sea lions. Funct Ecol 9(2):151–160CrossRefGoogle Scholar
  10. Burns JM, Clark CA, Richmond JP (2004) The impact of lactation strategy on physiological development of juvenile marine mammals: implications for the transition to independent foraging. Int Congr Ser 1275:341–350. doi: 10.1016/j.ics.2004.09.032 CrossRefGoogle Scholar
  11. Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77(3):837–899PubMedGoogle Scholar
  12. Cai W, Shi G, Cowan T, Bi D, Ribbe J (2005) The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys Res Lett 32(23):L03712. doi: 10.1029/2005GL024701 CrossRefGoogle Scholar
  13. Costa DP (1991) Reproductive and foraging energetics of high latitude penguins, albatrosses and pinnipeds: implications for life history patterns. Am Zool 31(1):111–130. doi: 10.1093/icb/31.1.111 CrossRefGoogle Scholar
  14. Costa DP (1993) The relationship between reproductive and foraging energetics and the evolution of the Pinnipedia. Symp Zool Soc Lond 66:293–314Google Scholar
  15. Costa DP, Gales NJ (2000) Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J Exp Biol 203(23):3655–3665PubMedGoogle Scholar
  16. Costa DP, Gales NJ (2003) Energetics of a benthic diver: seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol Monogr 73(1):27–43CrossRefGoogle Scholar
  17. Costa DP, Croxall JP, Duck CD (1989) Foraging energetics of Antarctic fur seals in relation to changes in prey availability. Ecology 70(3):596–606. doi: 10.2307/1940211 CrossRefGoogle Scholar
  18. Costa DP, Gales NJ, Goebel ME (2001) Aerobic dive limit: how often does it occur in nature? Comp Biochem Physiol Part A Mol Integr Physiol 129(4):771–783CrossRefGoogle Scholar
  19. Costa DP, Kuhn CE, Weise MJ, Shaffer SA, Arnould JPY (2004) When does physiology limit the foraging behaviour of freely diving mammals? Int Congr Ser 1275:359–366CrossRefGoogle Scholar
  20. Dassis M, Rodríguez DH, Ieno EN, Davis RW (2012) Submerged swimming and resting metabolic rates in Southern sea lions. J Exp Mar Biol Ecol 432–433:106–112. doi: 10.1016/j.jembe.2012.07.001 CrossRefGoogle Scholar
  21. Davis RW, Williams TM (2012) The marine mammal dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol 198(8):583–591. doi: 10.1007/s00359-012-0731-4 CrossRefGoogle Scholar
  22. Donohue MJ, Costa DP, Goebel ME, Baker JD (2000) The ontogeny of metabolic rate and thermoregulatory capabilities of northern fur seal, Callorhinus ursinus, pups in air and water. J Exp Biol 203(6):1003–1016PubMedGoogle Scholar
  23. Fedak MA, Rome L, Seeherman HJ (1981) One-step N2-dilution technique for calibrating open-circuit VO2 measuring systems. J Appl Physiol 51(3):772–776PubMedGoogle Scholar
  24. Feldkamp S (1987) Swimming in the California sea lion: morphometrics, drag and energetics. J Exp Biol 131:117–135PubMedGoogle Scholar
  25. Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: Platypus to Whale*. Physiol Biochem Zool 73(6):683–698. doi: 10.1086/318108 CrossRefPubMedGoogle Scholar
  26. Fowler SL, Costa DP, Arnould JP, Gales NJ, Kuhn CE (2006) Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer. J Anim Ecol 75(2):358–367. doi: 10.1111/j.1365-2656.2006.01055.x CrossRefPubMedGoogle Scholar
  27. Fowler SL, Costa DP, Arnould JP (2007a) Ontogeny of movements and foraging ranges in the Australian sea lion. Mar Mamm Sci 23(3):598–614CrossRefGoogle Scholar
  28. Fowler SL, Costa DP, Arnould JP, Gales NJ, Burns JM (2007b) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21(5):922–935. doi: 10.1111/j.1365-2435.2007.01295.x CrossRefGoogle Scholar
  29. Gales NJ, Shaughnessy PD, Dennis TE (1994) Distribution, abundance and breeding cycle of the Australian sea lion Neophoca cinerea (Mammalia: Pinnipedia). J Zool 234(3):353–370CrossRefGoogle Scholar
  30. Gerlinsky CD, Rosen DA, Trites AW (2013) High diving metabolism results in a short aerobic dive limit for Steller sea lions (Eumetopias jubatus). J Comp Physiol B 183(5):1–10. doi: 10.1007/s00360-013-0742-7 CrossRefGoogle Scholar
  31. Harcourt RG, Schulman AM, Davis LS, Trillmich F (1995) Summer foraging by lactating female New Zealand fur seals (Arctocephalus forsteri) off Otago Peninsula, New Zealand. Can J Zool 73(4):678–690CrossRefGoogle Scholar
  32. Harcourt RG, Bradshaw CJA, Davis LS (2001) Summer foraging behaviour of a generalist predator, the New Zealand fur seal (Arctocephalus forsteri). Wildl Res 28(6):599–606. doi: 10.1071/WR01045 CrossRefGoogle Scholar
  33. Harcourt RG, Bradshaw CJA, Dickson K, Davis LS (2002) Foraging ecology of a generalist predator, the female New Zealand fur seal. Mar Ecol Prog Ser 227:11–24. doi: 10.3354/meps227011 CrossRefGoogle Scholar
  34. Hastie GD, Rosen DAS, Trites AW (2006) The influence of depth on a breath-hold diver: Predicting the diving metabolism of Steller sea lions (Eumetopias jubatus). J Exp Mar Biol Ecol 336(2):163–170. doi: 10.1016/j.jembe.2006.05.004 CrossRefGoogle Scholar
  35. Hastie GD, Rosen DAS, Trites AW (2007) Reductions in oxygen consumption during dives and estimated submergence limitations of Steller sea lions (Eumetopias jubatus). Mar Mamm Sci 23(2):272–286. doi: 10.1111/j.1748-7692.2007.00118.x CrossRefGoogle Scholar
  36. Higgins LV, Gass L (1993) Birth to weaning: parturition, duration of lactation, and attendance cycles of Australian sea lions (Neophoca cinerea). Can J Zool 71(10):2047–2055CrossRefGoogle Scholar
  37. Hind A, Gurney W (1997) The metabolic cost of swimming in marine homeotherms. J Exp Biol 200(3):531–542PubMedGoogle Scholar
  38. Hindle AG, Young BL, Rosen DAS, Haulena M, Trites AW (2010) Dive response differs between shallow- and deep-diving Steller sea lions (Eumetopias jubatus). J Exp Mar Biol Ecol 394(1–2):141–148. doi: 10.1016/j.jembe.2010.08.006 CrossRefGoogle Scholar
  39. Horning M, Trillmich F (1997a) Development of hemoglobin, hematocrit, and erythrocyte values in Galapagos fur seals. Mar Mamm Sci 13(1):100–113CrossRefGoogle Scholar
  40. Horning M, Trillmich F (1997b) Ontogeny of diving behaviour in the Galapagos fur seal. Behaviour 134(15/16):1211–1257. doi: 10.1163/156853997X00133 CrossRefGoogle Scholar
  41. Hoskins AJ, Costa DP, Wheatley KE, Gibbens JR, Arnould JP (2015) Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar Ecol Prog Ser 526:227–239. doi: 10.3354/meps11200 CrossRefGoogle Scholar
  42. Hothorn T, Bretz F, Westfall P, Heiberger R, Schuetzenmeister A, Scheibe S (2013) multcomp: Simultaneous inference in general parametric models. Version 1.3.0. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Hückstädt LA, Tift MS, Riet-Sapriza F, Franco-Trecu V, Baylis AMM, Orben RA, Arnould JPY, Sepulveda M, Santos M, Burns JM, Costa DP (2016) Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion Otaria byronia. J Exp Biol. doi: 10.1242/jeb.138677 PubMedGoogle Scholar
  44. Hurley J, Costa DP (2001) Standard metabolic rate at the surface and during trained submersions in adult California sea lions (Zalophus californianus). J Exp Biol 204:3273–3281PubMedGoogle Scholar
  45. Jeglinski JWE, Goetz KT, Werner C, Costa DP, Trillmich F (2013) Same size—same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J Anim Ecol 82(3):694–706. doi: 10.1111/1365-2656.12019 CrossRefPubMedGoogle Scholar
  46. Karasov WH (1992) Daily energy expenditure and the cost of activity in mammals. Am Zool 32(2):238–248. doi: 10.1093/icb/32.2.238 CrossRefGoogle Scholar
  47. Kleiber M (1975) Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J Theor Biol 53(1):199–204. doi: 10.1016/0022-5193(75)90110-1 CrossRefPubMedGoogle Scholar
  48. Kooyman G (1989) Diverse divers: physiology and behaviour. Springer, BerlinCrossRefGoogle Scholar
  49. Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60(1):19–32. doi: 10.1146/annurev.physiol.60.1.19 CrossRefPubMedGoogle Scholar
  50. Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9(2):277–286CrossRefPubMedGoogle Scholar
  51. Lindenfors P, Tullberg BS, Biuw M (2002) Phylogenetic analyses of sexual selection and sexual size dimorphism in pinnipeds. Behav Ecol Sociobiol 52(3):188–193. doi: 10.1007/s00265-002-0507-x CrossRefGoogle Scholar
  52. Littnan CL, Arnould JPY (2007) Effect of proximity to the shelf edge on the diet of female Australian fur seals. Mar Ecol Prog Ser 338:257–267. doi: 10.3354/meps338257 CrossRefGoogle Scholar
  53. Liwanag HEW, Williams TM, Costa D, Kanatous S, Davis R, Boyd I (2009) The effects of water temperature on the energetic costs of juvenile and adult California sea lions (Zalophus californianus): the importance of skeletal muscle thermogenesis for thermal balance. J Exp Biol 212(24):3977–3984. doi: 10.1242/jeb.033282 CrossRefPubMedGoogle Scholar
  54. Lowther AD, Harcourt RG, Hamer DJ, Goldsworthy SD (2011) Creatures of habit: foraging habitat fidelity of adult female Australian sea lions. Mar Ecol Prog Ser 443:249–263. doi: 10.3354/meps09392 CrossRefGoogle Scholar
  55. Lowther AD, Harcourt RG, Page B, Goldsworthy SD (2013) Steady as he goes: at-sea movement of adult male Australian sea lions in a dynamic marine environment. PLoS One 8(9):e74348. doi: 10.1371/journal.pone.0074348 CrossRefPubMedPubMedCentralGoogle Scholar
  56. McIntosh RR, Page B, Goldsworthy SD (2006) Dietary analysis of regurgitates and stomach samples from free-living Australian sea lions. Wildl Res 33(8):661–669. doi: 10.1071/WR06025 CrossRefGoogle Scholar
  57. Mori Y (2002) Optimal diving behaviour for foraging in relation to body size. J Evol Biol 15(2):269–276. doi: 10.1046/j.1420-9101.2002.00382.x CrossRefGoogle Scholar
  58. Ochoa-Acuña HG, McNab BK, Miller EH (2009) Seasonal energetics of northern phocid seals. Comp Biochem Physiol Part A 152(3):341–350. doi: 10.1016/j.cbpa.2008.11.008 CrossRefGoogle Scholar
  59. Page B, McKenzie J, Goldsworthy SD (2005a) Dietary resource partitioning among sympatric New Zealand and Australian fur seals. Mar Ecol Prog Ser 293:283–302. doi: 10.3354/meps293283 CrossRefGoogle Scholar
  60. Page B, McKenzie J, Goldsworthy SD (2005b) Inter-sexual differences in New Zealand fur seal diving behaviour. Mar Ecol Prog Ser 304:249–264. doi: 10.3354/meps304249 CrossRefGoogle Scholar
  61. Page B, McKenzie J, Sumner MD, Coyne M, Goldsworthy SD (2006) Spatial separation of foraging habitats among New Zealand fur seals. Mar Ecol Prog Ser 323:263–279. doi: 10.3354/meps323263 CrossRefGoogle Scholar
  62. Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Ponganis PJ (2015) Diving physiology of marine mammals and seabirds. Cambridge University Press, United KingdomCrossRefGoogle Scholar
  64. Ponganis PJ, Kooyman GL, Zornow MH, Castellini MA, Croll DA (1990) Cardiac output and stroke volume in swimming harbor seals. J Comp Physiol B 160(5):473–482CrossRefPubMedGoogle Scholar
  65. Ponganis PJ, Kooyman GL, Zornow MH (1991) Cardiac output in swimming California sea lions, Zalophus californianus. Physiol Zool 64(5):1296–1306CrossRefGoogle Scholar
  66. Ponganis PJ, Gentry RL, Ponganis EP, Ponganis KV (1992) Analysis of swim velocities during deep and shallow dives of two northern fur seals, Callorhinus ursinus. Mar Mamm Sci 8(1):69–75. doi: 10.1111/j.1748-7692.1992.tb00126.x CrossRefGoogle Scholar
  67. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Accessed Aug 2015
  68. Richmond J, Burns J, Rea L (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions. J Comp Physiol B Biochem Syst Environ Physiol 176(6):535–545. doi: 10.1007/s00360-006-0076-9 CrossRefGoogle Scholar
  69. Rosen D, Renouf D (1995) Variation in the metabolic rates of captive harbour seals. Dev Mar Biol 4:393–399. doi: 10.1016/S0163-6995(06)80041-7 CrossRefGoogle Scholar
  70. Rosen DAS, Trites AW (1997) Heat increment of feeding in Steller sea lions, Eumetopias jubatus. Comp Biochem Physiol Part A Mol Integr Physiol 118(3):877–881. doi: 10.1016/S0300-9629(97)00039-X CrossRefGoogle Scholar
  71. Rosen DAS, Trites AW (2002) Cost of transport in Steller sea lions, Eumetopias jubatus. Mar Mamm Sci 18(2):513–524. doi: 10.1111/j.1748-7692.2002.tb01052.x CrossRefGoogle Scholar
  72. Rosen DAS, Gerlinsky CD, Trites AW (2015) Evidence of partial deferment of digestion during diving in Steller sea lions (Eumetopias jubatus). J Exp Mar Biol Ecol 469:93–97. doi: 10.1016/j.jembe.2015.04.017 CrossRefGoogle Scholar
  73. Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177(4045):222–228CrossRefPubMedGoogle Scholar
  74. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, CambridgeGoogle Scholar
  75. Shero MR, Andrews RD, Lestyk KC, Burns JM (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B Biochem Syst Environ Physiol 182(3):425–436. doi: 10.1007/s00360-011-0619-6 CrossRefGoogle Scholar
  76. Spence-Bailey L, Verrier D, Arnould J (2007) The physiological and behavioural development of diving in Australian fur seal (Arctocephalus pusillus doriferus) pups. J Comp Physiol B Biochem Syst Environ Physiol 177(4):483–494. doi: 10.1007/s00360-007-0146-7 CrossRefGoogle Scholar
  77. Staniland IJ, Boyd IL, Reid K (2007) An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar Biol 152(2):233–241. doi: 10.1007/s00227-007-0698-9 CrossRefGoogle Scholar
  78. Verrier D, Guinet C, Authier M, Tremblay Y, Shaffer S, Costa DP, Groscolas R, Arnould JPY (2011) The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? Funct Ecol 25(4):818–828. doi: 10.1111/j.1365-2435.2011.01846.x CrossRefGoogle Scholar
  79. Watanabe YY, Sato K, Watanuki Y, Takahashi A, Mitani Y, Amano M, Aoki K, Narazaki T, Iwata T, Minamikawa S, Miyazaki N (2011) Scaling of swim speed in breath-hold divers. J Anim Ecol 80(1):57–68. doi: 10.1111/j.1365-2656.2010.01760.x CrossRefPubMedGoogle Scholar
  80. Weise MJ, Costa DP (2007) Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 210(2):278–289. doi: 10.1242/jeb.02643 CrossRefPubMedGoogle Scholar
  81. Wells RMG (1978) Observations on the haematology and oxygen transport of the New Zealand fur seal, Arctocephalus forsteri. N Z J Zool 5(2):421–424CrossRefGoogle Scholar
  82. Williams TM (1999) The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philos Trans R Soc Lond B Biol Sci 354(1380):193–201. doi: 10.1098/rstb.1999.0371 CrossRefPubMedCentralGoogle Scholar
  83. Williams TM, Kooyman GL, Croll DA (1991) The effect of submergence on heart rate and oxygen consumption of swimming seals and sea lions. J Comp Physiol B Biochem Syst Environ Physiol 160(6):637–644. doi: 10.1007/BF00571261 CrossRefGoogle Scholar
  84. Williams TM, Rutishauser M, Long B, Fink T, Gafney J, Mostman-Liwanag H, Casper D (2007) Seasonal variability in otariid energetics: implications for the effects of predators on localized prey resources. Physiol Biochem Zool 80(4):433–443CrossRefPubMedGoogle Scholar
  85. Williams TM, Fuiman LA, Davis RW (2015) Locomotion and the cost of hunting in large, stealthy marine carnivores. Integr Comp Biol 55(4):1–10. doi: 10.1093/icb/icv025 CrossRefGoogle Scholar
  86. Withers PC (1977) Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42(1):120–123PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Monique A. Ladds
    • 1
    Email author
  • David J. Slip
    • 1
    • 2
  • Robert G. Harcourt
    • 1
  1. 1.Marine Predator Research Group, Department of Biological SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.Taronga Conservation Society AustraliaMosmanAustralia

Personalised recommendations